Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (8): 820-825.doi: 10.11958/20251147
• Experimental Research • Previous Articles Next Articles
CHEN Hui(), ZHAO Kai, LIU Zhenguo, CHANG Ying, JU Kanglu△(
)
Received:
2025-03-20
Revised:
2025-05-19
Published:
2025-08-15
Online:
2025-08-12
Contact:
△E-mail:CHEN Hui, ZHAO Kai, LIU Zhenguo, CHANG Ying, JU Kanglu. Study on the mechanism of hypericin improving acute pancreatitis in mice by regulating NLRP3 inflammasome[J]. Tianjin Medical Journal, 2025, 53(8): 820-825.
CLC Number:
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
β-actin | 上游:AGAGGGAAATCGTGCGTGAC | 236 |
下游:CAATAGTGATGACCTGGCCGT | ||
NLRP3 | 上游:TCCACAATTCTGACCCACAA | 228 |
下游:ACCTCACAGAGGGTCACCAC | ||
Caspase-1 | 上游:GGGCCCCAGGCAAGCCAAATC | 225 |
下游:AGGGCAAGACGTGTACGAGTGGT | ||
IL-1β | 上游:TCTTTGAAGTTGACGGACCC | 235 |
下游:TGAGTGATACTG CCTGCCTG | ||
TNF-α | 上游:GTCGCTACCGTCGTGACTTC | 216 |
下游:CAGACATGCACCTACCCAGC | ||
IL-18 | 上游:ACACCAGCCTGGCTTCCATC | 208 |
下游:TTGGAGCTGGAGCTGCTTATAGTTG |
Tab.1 Primer sequences of qPCR
基因名称 | 引物序列(5'→3') | 产物大小/bp |
---|---|---|
β-actin | 上游:AGAGGGAAATCGTGCGTGAC | 236 |
下游:CAATAGTGATGACCTGGCCGT | ||
NLRP3 | 上游:TCCACAATTCTGACCCACAA | 228 |
下游:ACCTCACAGAGGGTCACCAC | ||
Caspase-1 | 上游:GGGCCCCAGGCAAGCCAAATC | 225 |
下游:AGGGCAAGACGTGTACGAGTGGT | ||
IL-1β | 上游:TCTTTGAAGTTGACGGACCC | 235 |
下游:TGAGTGATACTG CCTGCCTG | ||
TNF-α | 上游:GTCGCTACCGTCGTGACTTC | 216 |
下游:CAGACATGCACCTACCCAGC | ||
IL-18 | 上游:ACACCAGCCTGGCTTCCATC | 208 |
下游:TTGGAGCTGGAGCTGCTTATAGTTG |
组别 | AMS/(U/L) | 脂肪酶/(U/L) |
---|---|---|
正常对照组 | 1 957.14±23.80 | 189.92±13.03 |
模型组 | 6 512.55±100.10a | 383.03±29.85a |
HY低剂量组 | 5 031.68±43.70b | 348.75±28.77 |
HY中剂量组 | 4 137.10±40.90bc | 310.43±22.43bc |
HY高剂量组 | 2 129.28±31.20bcd | 231.32±17.65bcd |
F | 399.100** | 82.500** |
Tab.2 Comparison of AMS and lipase levels between the five groups of mice (n=10,$\bar{x}±s$)
组别 | AMS/(U/L) | 脂肪酶/(U/L) |
---|---|---|
正常对照组 | 1 957.14±23.80 | 189.92±13.03 |
模型组 | 6 512.55±100.10a | 383.03±29.85a |
HY低剂量组 | 5 031.68±43.70b | 348.75±28.77 |
HY中剂量组 | 4 137.10±40.90bc | 310.43±22.43bc |
HY高剂量组 | 2 129.28±31.20bcd | 231.32±17.65bcd |
F | 399.100** | 82.500** |
组别 | 胰蛋白酶/(U/mg) | MPO/(U/g) |
---|---|---|
正常对照组 | 4.59±0.33 | 1.25±0.08 |
模型组 | 15.22±1.05a | 2.77±0.36a |
HY低剂量组 | 11.28±0.75b | 2.61±0.39 |
HY中剂量组 | 8.38±0.66b | 2.33±0.26bc |
HY高剂量组 | 5.23±0.34bcd | 1.41±0.11bcd |
F | 209.900** | 45.550** |
Tab.3 Comparison of trypsin and MPO activities between five groups of mice (n=10,$\bar{x}±s$)
组别 | 胰蛋白酶/(U/mg) | MPO/(U/g) |
---|---|---|
正常对照组 | 4.59±0.33 | 1.25±0.08 |
模型组 | 15.22±1.05a | 2.77±0.36a |
HY低剂量组 | 11.28±0.75b | 2.61±0.39 |
HY中剂量组 | 8.38±0.66b | 2.33±0.26bc |
HY高剂量组 | 5.23±0.34bcd | 1.41±0.11bcd |
F | 209.900** | 45.550** |
组别 | 胰腺组织(n=3) | 血清(n=10,ng/L) | ||
---|---|---|---|---|
IL-1β mRNA | TNF-α mRNA | IL-1β | TNF-α | |
正常对照组 | 1.00±0.00 | 1.00±0.00 | 77.35±3.89 | 42.54±3.03 |
模型组 | 5.30±0.26a | 3.77±0.28a | 198.30±10.11a | 213.50±9.15a |
HY低剂量组 | 4.17±0.17b | 2.83±0.13b | 158.10±9.77b | 164.20±6.32b |
HY中剂量组 | 2.73±0.11bc | 2.30±0.12bc | 124.70±8.56bc | 95.81±4.33bc |
HY高剂量组 | 1.07±0.03bcd | 0.97±0.04bcd | 74.77±4.31bcd | 47.77±2.21bcd |
F | 114.500** | 123.000** | 199.600** | 207.100** |
Tab.4 Comparison of expression levels of inflammatory factors in serum and pancreatic tissue of mice between five groups ($\bar{x}±s$)
组别 | 胰腺组织(n=3) | 血清(n=10,ng/L) | ||
---|---|---|---|---|
IL-1β mRNA | TNF-α mRNA | IL-1β | TNF-α | |
正常对照组 | 1.00±0.00 | 1.00±0.00 | 77.35±3.89 | 42.54±3.03 |
模型组 | 5.30±0.26a | 3.77±0.28a | 198.30±10.11a | 213.50±9.15a |
HY低剂量组 | 4.17±0.17b | 2.83±0.13b | 158.10±9.77b | 164.20±6.32b |
HY中剂量组 | 2.73±0.11bc | 2.30±0.12bc | 124.70±8.56bc | 95.81±4.33bc |
HY高剂量组 | 1.07±0.03bcd | 0.97±0.04bcd | 74.77±4.31bcd | 47.77±2.21bcd |
F | 114.500** | 123.000** | 199.600** | 207.100** |
组别 | NLRP3 mRNA | NLRP3 蛋白 | IL-18 mRNA | Caspase-1 mRNA |
---|---|---|---|---|
正常对照组 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
模型组 | 6.50±0.36a | 2.77±0.15a | 7.97±0.59a | 4.30±0.31a |
HY低剂量组 | 5.93±0.28 | 2.67±0.14 | 6.70±0.42b | 3.17±0.22b |
HY中剂量组 | 3.83±0.11bc | 1.77±0.08bc | 4.37±0.29bc | 2.13±0.15bc |
HY高剂量组 | 1.10±0.04bcd | 1.02±0.02bcd | 1.17±0.05bcd | 0.93±0.02bcd |
F | 83.570** | 32.250** | 63.160** | 69.470** |
Tab.5 Comparison of expression levels of NLRP3, IL-18, Caspase-1 mRNA and NLRP3 protein between five groups of mice (n=3,$\bar{x}±s$)
组别 | NLRP3 mRNA | NLRP3 蛋白 | IL-18 mRNA | Caspase-1 mRNA |
---|---|---|---|---|
正常对照组 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 | 1.00±0.00 |
模型组 | 6.50±0.36a | 2.77±0.15a | 7.97±0.59a | 4.30±0.31a |
HY低剂量组 | 5.93±0.28 | 2.67±0.14 | 6.70±0.42b | 3.17±0.22b |
HY中剂量组 | 3.83±0.11bc | 1.77±0.08bc | 4.37±0.29bc | 2.13±0.15bc |
HY高剂量组 | 1.10±0.04bcd | 1.02±0.02bcd | 1.17±0.05bcd | 0.93±0.02bcd |
F | 83.570** | 32.250** | 63.160** | 69.470** |
组别 | 细胞存活率/% | NLRP3 mRNA |
---|---|---|
Control组 | 100.00±0.00 | 1.00±0.00 |
AP组 | 42.80±3.06a | 6.03±0.58a |
CCK+HY 1 μmol/L组 | 53.90±4.11b | 5.03±0.32b |
CCK+HY 2 μmol/L组 | 63.47±5.45bc | 3.43±0.29bc |
CCK+HY 4 μmol/L组 | 94.07±10.01bcd | 1.01±0.02bcd |
F | 239.400** | 84.070** |
组别 | IL-18 mRNA | Caspase-1 mRNA |
Control组 | 1.00±0.00 | 1.00±0.00 |
AP组 | 3.93±0.38a | 6.33±0.51a |
CCK+HY 1 μmol/L组 | 2.70±0.22b | 4.90±0.42b |
CCK+HY 2 μmol/L组 | 1.93±0.16bc | 3.23±0.28bc |
CCK+HY 4 μmol/L组 | 0.97±0.03bcd | 1.03±0.01bcd |
F | 83.610** | 75.660** |
Tab.6 Comparison of cell survival rates, NLRP3, IL-18 and Caspase-1 mRNA levels between five groups (n=3,$\bar{x}±s$)
组别 | 细胞存活率/% | NLRP3 mRNA |
---|---|---|
Control组 | 100.00±0.00 | 1.00±0.00 |
AP组 | 42.80±3.06a | 6.03±0.58a |
CCK+HY 1 μmol/L组 | 53.90±4.11b | 5.03±0.32b |
CCK+HY 2 μmol/L组 | 63.47±5.45bc | 3.43±0.29bc |
CCK+HY 4 μmol/L组 | 94.07±10.01bcd | 1.01±0.02bcd |
F | 239.400** | 84.070** |
组别 | IL-18 mRNA | Caspase-1 mRNA |
Control组 | 1.00±0.00 | 1.00±0.00 |
AP组 | 3.93±0.38a | 6.33±0.51a |
CCK+HY 1 μmol/L组 | 2.70±0.22b | 4.90±0.42b |
CCK+HY 2 μmol/L组 | 1.93±0.16bc | 3.23±0.28bc |
CCK+HY 4 μmol/L组 | 0.97±0.03bcd | 1.03±0.01bcd |
F | 83.610** | 75.660** |
[1] | 叶朝阳, 马建中, 李后俊, 等. 急性胰腺炎患者外周血TLR4、IL-1β、NLR水平与疾病进展和预后的关系[J]. 天津医药, 2024, 52(6):648-652. |
YE C Y, MA J Z, LI H J, et al. Relationship between peripheral blood TLR4,IL-1β and NLR and the progression and prognosis of acute pancreatitis[J]. Tianjin Med J, 2024, 52(6):648-652. doi:10.11958/20231354. | |
[2] | 丁杨娟, 夏时海, 许威, 等. 氧化应激及抗氧化剂在急性胰腺炎中的研究进展[J]. 天津医药, 2025, 53(4):444-448. |
DING Y J, XIA S H, XU W, et al. Research progress of oxidative stress and antioxidants in acute pancreatitis[J]. Tianjin Med J, 2025, 53(4):444-448. doi:10.11958/20242366. | |
[3] | BOXHOORN L, VOERMANS R P, BOUWENSE S A, et al. Acute pancreatitis[J]. Lancet, 2020, 396(10252):726-734. doi:10.1016/S0140-6736(20)31310-6. |
[4] | MEDEROS M A, REBER H A, GIRGIS M D. Acute pancreatitis:A review[J]. JAMA, 2021, 325(4):382-390. doi:10.1001/jama.2020.20317. |
[5] | ZEREM E, KURTCEHAJIC A, KUNOSIĆ S, et al. Current trends in acute pancreatitis: Diagnostic and therapeutic challenges[J]. World J Gastroenterol, 2023, 29(18):2747-2763. doi:10.3748/wjg.v29.i18.2747. |
[6] | 王小红, 钱晶, 王加伟, 等. 红景天苷辅助治疗中重症急性胰腺炎的机制研究[J]. 天津医药, 2023, 51(7):762-765. |
WANG X H, QIAN J, WANG J W, et al. The study on the mechanism of salidroside in the adjuvant treatment of patients with moderately severe acute pancreatitis[J]. Tianjin Med J, 2023, 51(7):762-765. doi:10.11958/20221606. | |
[7] | WU J J, ZHANG J, XIA C Y, et al. Hypericin:A natural anthraquinone as promising therapeutic agent[J]. Phytomedicine, 2023,111:154654. doi:10.1016/j.phymed.2023.154654. |
[8] | PENG Z, LU J, LIU K, et al. Hypericin as a promising natural bioactive naphthodianthrone:A review of its pharmacology,pharmacokinetics,toxicity,and safety[J]. Phytother Res, 2023, 37(12):5639-5656. doi:10.1002/ptr.8011. |
[9] | KIM E J, MANGOLD A R, DESIMONE J A, et al. Efficacy and safety of topical hypericin photodynamic therapy for early-stage cutaneous T-cell lymphoma (mycosis fungoides):The FLASH phase 3 randomized clinical trial[J]. JAMA Dermatol, 2022, 158(9):1031-1039. doi:10.1001/jamadermatol.2022.2749. |
[10] | 冯敏超, 秦百君, 罗芳, 等. 清解化攻方调控NLRP3/TLR4/NF-κB信号通路对重症急性胰腺炎小鼠模型胰腺组织的保护作用[J]. 临床肝胆病杂志, 2024, 40(2):343-350. |
FENG M C, QIN B J, LUO F, et al. Protective effect of Qingjie Huagong decoction on pancreatic tissue of mice with severe acute pancreatitis by regulating the NOD-like receptor protein 3/Toll-like receptor 4/nuclear factor-kappa B signaling pathway[J]. Journal of Clinical Hepatology, 2024, 40(2):343-350. doi:10.12449/JCH240219. | |
[11] | WILEY M B, MEHROTRA K, BAUER J, et al. Acute pancreatitis:Current clinical approaches,molecular pathophysiology,and potential therapeutics[J]. Pancreas, 2023, 52(6):e335-e343. doi:10.1097/MPA.0000000000002259. |
[12] | 李勇. 右美托咪定对急性胰腺炎小鼠炎症反应的保护作用和机制研究[D]. 南京: 南京医科大学, 2018. |
LI Y. Study on the protective effect and mechanism of Dexmedetomidine on the inflammatory response in mice with acute pancreatitis[D]. Nanjing: Nanjing Medical University, 2018. | |
[13] | 王倩, 王捷虹, 沙志惠, 等. 辰时温中健脾饼灸联合五行音乐干预急性胰腺炎恢复期肝郁脾虚型胃肠道功能研究[J]. 现代中医药, 2021, 41(6):57-61. |
WANG Q, WANG J H, SHA Z H, et al. Effect of Wenzhong Jianpi Cake Moxibustion combined with Five Elements Music on gastrointestinal function of liver depression and spleen deficiency in convalescent stage of acute pancreatitis in the period from 7 a.m to 9 a.m[J]. Modern Traditional Chinese Medicine, 2021, 41(6):57-61. doi:10.13424/j.cnki.mtcm.2021.06.011. | |
[14] | 刘伟, 支媛, 高璐, 等. 急性胰腺炎患者血清微小RNA-340-3 p、CXC趋化因子配体-13和CXC趋化因子配体-16的表达意义[J]. 陕西医学杂志, 2024, 52(1):97-100. |
LIU W, ZHI Y, GAO L, et al. Expressions and significance of miR-340-3p,CXCL-13 and CXCL-16 in serum of patients with acute pancreatitis[J]. Shaanxi Medical Journal, 2024, 52(1):97-100. doi:10.3969/j.issn.1000-7377.2023.01.023. | |
[15] | HIROTA M, OHMURAYA M, HASHIMOTO D, et al. Roles of autophagy and pancreatic secretory trypsin inhibitor in trypsinogen activation in acute pancreatitis[J]. Pancreas, 2020, 49(4):493-497. doi:10.1097/MPA.0000000000001519. |
[16] | MAYERLE J, SENDLER M, HEGYI E, et al. Genetics, cell biology, and pathophysiology of pancreatitis[J]. Gastroenterology, 2019, 156(7):1951-1968.e1. doi:10.1053/j.gastro.2018.11.081. |
[17] | 陈钰莹, 黄小华, 明兵, 等. 急性胰腺炎血清胰酶与胰腺微循环相关性的CT灌注研究[J]. 临床放射学杂志, 2023, 42(6):942-946. |
CHEN Y Y, HUANG X H, MING B, et al. CT perfusion study on the relationship between serum trypsin and pancreatic microcirculation in acute pancreatitis[J]. Journal of Clinical Radiology, 2023, 42(6):942-946. | |
[18] | HAN H, ZHANG L, FU Q, et al. Plasma exosomes aggravate acute pancreatitis by promoting M1 polarization of adipose tissue macrophages in obesity-related severe acute pancreatitis[J]. Dig Dis Sci, 2023, 68(9):3660-3670. doi:10.1007/s10620-023-08021-0. |
[19] | YANG L, YE F, LIU J, et al. Extracellular SQSTM1 exacerbates acute pancreatitis by activating autophagy-dependent ferroptosis[J]. Autophagy, 2023, 19(6):1733-1744. doi:10.1080/15548627.2022.2152209. |
[20] | FU J, WU H. Structural mechanisms of NLRP3 inflammasome assembly and activation[J]. Annu Rev Immunol, 2023,41:301-316. doi:10.1146/annurev-immunol-081022-021207. |
[21] | ZHENG S, QUE X, WANG S, et al. ZDHHC5-mediated NLRP3 palmitoylation promotes NLRP3-NEK7 interaction and inflammasome activation[J]. Mol Cell, 2023, 83(24):4570-4585.e7. doi:10.1016/j.molcel.2023.11.015. |
[22] | BLEVINS H M, XU Y, BIBY S, et al. The NLRP3 inflammasome pathway:A review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022,14:879021. doi:10.3389/fnagi.2022.879021. |
[23] | YAN X, LIN T, ZHU Q, et al. Naringenin protects against acute pancreatitis-associated intestinal injury by inhibiting NLRP3 inflammasome activation via AhR signaling[J]. Front Pharmacol, 2023,14:1090261. doi:10.3389/fphar.2023.1090261. |
[24] | SENDLER M, VAN DEN BRANDT C, GLAUBITZ J, et al. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis[J]. Gastroenterology, 2020, 158(1):253-269.e14. doi:10.1053/j.gastro.2019.09.040. |
[25] | LI L, LIU Q, LE C, et al. Toll-like receptor 2 deficiency alleviates acute pancreatitis by inactivating the NF-κB/NLRP3 pathway[J]. Int Immunopharmacol, 2023,121:110547. doi:10.1016/j.intimp.2023.110547. |
[26] | FUJIMURA K, KARASAWA T, KOMADA T, et al. NLRP3 inflammasome-driven IL-1β and IL-18 contribute to lipopolysaccharide-induced septic cardiomyopathy[J]. J Mol Cell Cardiol, 2023, 180:58-68. doi:10.1016/j.yjmcc.2023.05.003. |
[27] | YADAVALLI C S, UPPARAHALLI VENKATESHAIAH S, KUMAR S, et al. Allergen-induced NLRP3/caspase1/IL-18 signaling initiate eosinophilic esophagitis and respective inhibitors protect disease pathogenesis[J]. Commun Biol, 2023, 6(1):763. doi:10.1038/s42003-023-05130-4. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||