Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (12): 1382-1386.doi: 10.11958/20230513
• Clinical Research • Previous Articles Next Articles
GUO Zhenjiang(), ZHAO Guangyuan, DU Liqiang, LIU Fangzhen(
)
Received:
2023-04-17
Revised:
2023-06-29
Published:
2023-12-15
Online:
2023-12-22
Contact:
△ E-mail:GUO Zhenjiang, ZHAO Guangyuan, DU Liqiang, LIU Fangzhen. Establishment and validation of a predictive nomogram model for advanced gastric cancer with lymphovascular invasion[J]. Tianjin Medical Journal, 2023, 51(12): 1382-1386.
CLC Number:
临床特征 | LVI阳性 (n=95) | LVI阴性 (n=151) | χ2或Z |
---|---|---|---|
年龄 | |||
<60岁 | 42(44.2) | 67(44.4) | 0.001 |
≥60岁 | 53(55.8) | 84(55.6) | |
性别 | |||
男 | 62(65.3) | 96(63.6) | 0.072 |
女 | 33(34.7) | 55(36.4) | |
肿瘤大小 | |||
<5 cm | 34(35.8) | 84(55.6) | 9.196** |
≥5 cm | 61(64.2) | 67(44.4) | |
肿瘤位置 | |||
上部 | 21(22.1) | 34(22.5) | 0.524 |
中部 | 31(32.6) | 44(29.1) | |
下部 | 34(35.8) | 60(39.7) | |
≥2/3 | 9(9.5) | 13(8.6) | |
Borrmann分型 | |||
Ⅰ—Ⅱ | 20(21.1) | 51(33.8) | 4.597* |
Ⅲ—Ⅳ | 75(78.9) | 100(66.2) | |
肿瘤分化 | |||
高-中分化 | 27(28.4) | 64(42.4) | 4.878* |
低-未分化 | 68(71.6) | 87(57.6) | |
Lauren分型 | |||
肠型 | 18(18.9) | 51(33.8) | |
弥漫型 | 52(54.7) | 58(38.4) | 8.095* |
混合型 | 25(26.3) | 42(27.8) | |
cT分期 | |||
T2—3 | 33(34.7) | 84(55.6) | 10.205** |
T4 | 62(65.3) | 67(44.4) | |
cN分期 | |||
N0 | 31(32.6) | 74(49.0) | 6.391* |
N+ | 64(67.4) | 77(51.0) | |
SII | 878.00 (649.50,1 351.00) | 682.00 (526.00,1 054.00) | 3.047** |
Tab.1 Univariate analysis of LVI positive influencing factors in gastric cancer patients with different clinical characteristics
临床特征 | LVI阳性 (n=95) | LVI阴性 (n=151) | χ2或Z |
---|---|---|---|
年龄 | |||
<60岁 | 42(44.2) | 67(44.4) | 0.001 |
≥60岁 | 53(55.8) | 84(55.6) | |
性别 | |||
男 | 62(65.3) | 96(63.6) | 0.072 |
女 | 33(34.7) | 55(36.4) | |
肿瘤大小 | |||
<5 cm | 34(35.8) | 84(55.6) | 9.196** |
≥5 cm | 61(64.2) | 67(44.4) | |
肿瘤位置 | |||
上部 | 21(22.1) | 34(22.5) | 0.524 |
中部 | 31(32.6) | 44(29.1) | |
下部 | 34(35.8) | 60(39.7) | |
≥2/3 | 9(9.5) | 13(8.6) | |
Borrmann分型 | |||
Ⅰ—Ⅱ | 20(21.1) | 51(33.8) | 4.597* |
Ⅲ—Ⅳ | 75(78.9) | 100(66.2) | |
肿瘤分化 | |||
高-中分化 | 27(28.4) | 64(42.4) | 4.878* |
低-未分化 | 68(71.6) | 87(57.6) | |
Lauren分型 | |||
肠型 | 18(18.9) | 51(33.8) | |
弥漫型 | 52(54.7) | 58(38.4) | 8.095* |
混合型 | 25(26.3) | 42(27.8) | |
cT分期 | |||
T2—3 | 33(34.7) | 84(55.6) | 10.205** |
T4 | 62(65.3) | 67(44.4) | |
cN分期 | |||
N0 | 31(32.6) | 74(49.0) | 6.391* |
N+ | 64(67.4) | 77(51.0) | |
SII | 878.00 (649.50,1 351.00) | 682.00 (526.00,1 054.00) | 3.047** |
变量 | 变量类型 | 变量赋值 |
---|---|---|
LVI | 因变量 | 阴性=0,阳性=1 |
肿瘤大小 | 自变量 | <5 cm=1,≥5 cm=2 |
Borrmann分型 | 自变量 | Ⅰ—Ⅱ型=1,Ⅲ—Ⅳ型=2 |
肿瘤分化 | 自变量 | 高-中分化=1,低-未分化=2 |
Lauren分型 | 自变量 | 肠型=1,弥漫型=2,混合型=3 |
cT分期 | 自变量 | cT2—3期=1,cT4期=2 |
cN分期 | 自变量 | cN0期=1,cN+期=2 |
SII | 自变量 | 连续变量 |
Tab.2 Variable assignment table
变量 | 变量类型 | 变量赋值 |
---|---|---|
LVI | 因变量 | 阴性=0,阳性=1 |
肿瘤大小 | 自变量 | <5 cm=1,≥5 cm=2 |
Borrmann分型 | 自变量 | Ⅰ—Ⅱ型=1,Ⅲ—Ⅳ型=2 |
肿瘤分化 | 自变量 | 高-中分化=1,低-未分化=2 |
Lauren分型 | 自变量 | 肠型=1,弥漫型=2,混合型=3 |
cT分期 | 自变量 | cT2—3期=1,cT4期=2 |
cN分期 | 自变量 | cN0期=1,cN+期=2 |
SII | 自变量 | 连续变量 |
变量 | β | SE | Waldχ2 | P | OR(95%CI) |
---|---|---|---|---|---|
肿瘤大小 | 0.781 | 0.296 | 6.984 | 0.008 | 2.184(1.224~3.898) |
Borrmann 分型 | 0.923 | 0.339 | 7.398 | 0.007 | 2.517(1.294~4.896) |
Lauren 分型 | 5.129 | 0.077 | |||
弥漫型 | -0.659 | 0.41 | 2.582 | 0.108 | 0.518(0.232~1.156) |
混合型 | 0.159 | 0.346 | 0.213 | 0.645 | 1.173(0.596~2.309) |
cT分期 | 0.620 | 0.294 | 4.456 | 0.035 | 1.860(1.045~3.308) |
cN分期 | 0.597 | 0.302 | 3.896 | 0.048 | 1.816(1.004~3.285) |
SII | 0.001 | <0.001 | 10.235 | 0.001 | 1.001(1.000~1.002) |
常数项 | -6.039 | 1.119 | 29.106 | <0.001 | 0.002 |
Tab.3 Multivariate analysis of preoperative predictors of LVI in gastric cancer
变量 | β | SE | Waldχ2 | P | OR(95%CI) |
---|---|---|---|---|---|
肿瘤大小 | 0.781 | 0.296 | 6.984 | 0.008 | 2.184(1.224~3.898) |
Borrmann 分型 | 0.923 | 0.339 | 7.398 | 0.007 | 2.517(1.294~4.896) |
Lauren 分型 | 5.129 | 0.077 | |||
弥漫型 | -0.659 | 0.41 | 2.582 | 0.108 | 0.518(0.232~1.156) |
混合型 | 0.159 | 0.346 | 0.213 | 0.645 | 1.173(0.596~2.309) |
cT分期 | 0.620 | 0.294 | 4.456 | 0.035 | 1.860(1.045~3.308) |
cN分期 | 0.597 | 0.302 | 3.896 | 0.048 | 1.816(1.004~3.285) |
SII | 0.001 | <0.001 | 10.235 | 0.001 | 1.001(1.000~1.002) |
常数项 | -6.039 | 1.119 | 29.106 | <0.001 | 0.002 |
[1] | 赫捷, 陈万青, 李兆申, 等. 中国胃癌筛查与早诊早治指南(2022,北京)[J]. 中华肿瘤杂志,2022, 44(7):634-666. |
HE J, CHEN W Q, LI Z S, et al. China guideline for the screening,early detection and early treatment of gastric cancer(2022,Beijing)[J]. Chin J Oncol,2022, 44(7):634-666. doi:10.3760/cma.j.cn112152-20220617-00430. | |
[2] | ZHANG C D, NING F L, ZENG X T, et al. Lymphovascular invasion as a predictor for lymph node metastasis and a prognostic factor in gastric cancer patients under 70 years of age:a retrospective analysis[J]. Int J Surg, 2018, 53:214-220. doi:10.1016/j.ijsu.2018.03.073. |
[3] | MEI D, ZHAO B C, ZHANG J L, et al. Impact of lymphovascular invasion on survival outcome in patients with gastric cancer[J]. Am J Clin Pathol, 2020, 153(6):833-841. doi:10.1093/ajcp/aqaa021. |
[4] | WU L L, LIANG Y X, ZHANG C, et al. Prognostic significance of lymphovascular infiltration in overall survival of gastric cancer patients after surgery with curative intent[J]. Chin J Cancer Res, 2019, 31(5):785-796. doi:10.21147/j.issn.1000-9604.2019.05.08. |
[5] | MA Z L, LIANG C H, HUANG Y Q, et al. Can lymphovascular invasion be predicted by preoperative multiphasic dynamic CT in patients with advanced gastric cancer?[J]. Eur Radiol, 2017, 27(8):3383-3391. doi:10.1007/s00330-016-4695-6. |
[6] | XU R, XIAO S M, DING Z, et al. The value of the C-reactive protein-to-lymphocyte ratio for predicting lymphovascular invasion based on nutritional status in gastric cancer[J]. Technol Cancer Res Treat, 2022, 21:15330338221106517. doi:10.1177/15330338221106517. |
[7] | DING P A, GUO H H, SUN C Y, et al. Combined systemic immune-inflammatory index (SII) and prognostic nutritional index (PNI) predicts chemotherapy response and prognosis in locally advanced gastric cancer patients receiving neoadjuvant chemotherapy with PD-1 antibody sintilimab and XELOX:a prospective study[J]. BMC Gastroenterol, 2022, 22(1):121. doi:10.1186/s12876-022-02199-9. |
[8] | 王举, 窦忠霞, 姜洪伟, 等. 基于癌症基因组图谱构建胃癌预后评估模型[J]. 天津医药, 2018, 46(12):1262-1266. |
WANG J, DOU Z X, JIANG H W, et al. Construction of prognostic predictive model of gastric cancer based on the cancer genome atlas[J]. Tianjin Med J, 2018, 46(12):1262-1266. doi:10.11958/20181254. | |
[9] | DICKEN B J, GRAHAM K, HAMILTON S M, et al. Lymphovascular invasion is associated with poor survival in gastric cancer:an application of gene-expression and tissue array techniques[J]. Ann Surg, 2006, 243(1):64-73. doi:10.1097/01.sla.0000194087.96582.3e. |
[10] | KIKUCHI E, MARGULIS V, KARAKIEWICZ P I, et al. Lymphovascular invasion predicts clinical outcomes in patients with node-negative upper tract urothelial carcinoma[J]. J Clin Oncol, 2009, 27(4):612-618. doi:10.1200/jco.2008.17.2361. |
[11] | ZHU Z, GONG Y B, XU H M. Clinical and pathological staging of gastric cancer:current perspectives and implications[J]. Eur J Surg Oncol, 2020, 46(< W>10 Pt B):e14-e19. doi:10.1016/j.ejso.2020.06.006. |
[12] | CHOI S, SONG J H, LEE S, et al. Lymphovascular invasion:traditional but vital and sensible prognostic factor in early gastric cancer[J]. Ann Surg Oncol, 2021, 28(13):8928-8935. doi:10.1245/s10434-021-10224-6. |
[13] | FUJIKAWA H, KOUNORI K, WATANABE H, et al. The clinical significance of lymphovascular invasion in gastric cancer[J]. In Vivo, 2020, 34(3):1533-1539. doi:10.21873/invivo.11942. |
[14] | LI P, HE H Q, ZHU C M, et al. The prognostic significance of lymphovascular invasion in patients with resectable gastric cancer:a large retrospective study from Southern China[J]. BMC Cancer, 2015, 15:370. doi:10.1186/s12885-015-1370-2. |
[15] | CHEN X F, YANG Z Q, YANG J D, et al. Radiomics analysis of contrast-enhanced CT predicts vascular invasion and disease outcome in gastric cancer:a preliminary study[J]. Cancer Imaging, 2020, 20(1):24. doi:10.1186/s40644-020-00302-5. |
[16] | 刘书豪, 侯新月, 张宪祥, 等. 进展期胃癌神经侵犯列线图预测模型的构建与验证[J]. 中华胃肠外科杂志, 2020, 23(11):1059-1066. |
LIU S H, HOU X Y, ZHANG X X, et al. Establishment and validation of a predictive nomogram model for advanced gastric cancer with perineural invasion[J]. Chin J Gastrointest Surg, 2020, 23(11):1059-1066. doi:10.3760/cma.j.cn.441530-20200103-00004. | |
[17] | GRESTA L T, RODRIGUES-JUNIOR I A, CASTRO L P, et al. Assessment of vascular invasion in gastric cancer:a comparative study[J]. World J Gastroenterol, 2013, 19(24):3761-3769. doi:10.3748/wjg.v19.i24.3761. |
[18] | SEEVARATNAM R, CARDOSO R, MCGREGOR C, et al. How useful is preoperative imaging for tumor,node,metastasis (TNM) staging of gastric cancer ? A meta-analysis[J]. Gastric Cancer, 2012, 15 Suppl 1:S3-18. doi:10.1007/s10120-011-0069-6. |
[19] | HIRAHARA N, MATSUBARA T, KAJI S, et al. Novel inflammation-combined prognostic index to predict survival outcomes in patients with gastric cancer[J]. Oncotarget, 2023, 14:71-82. doi:10.18632/oncotarget.28353. |
[20] | ZHU Z Y, CONG X L, LI R, et al. Preoperative systemic immune-inflammation index (SII) for predicting the survival of patients with stage I-III gastric cancer with a signet-ring cell (SRC) component[J]. Biomed Res Int, 2020, 2020:5038217. doi:10.1155/2020/5038217. |
[1] | WANG Yuanzhen, WEI Hongyan, CHANG Lixian, ZHANG Yingyuan, LIU Chunyun, LIU Li. Establishment and validation of a risk prediction model for primary liver cancer complicated with pulmonary infection before intervention [J]. Tianjin Medical Journal, 2024, 52(9): 940-945. |
[2] | GUO Zhenjiang, ZHAO Guangyuan, DU Liqiang, LIU Fangzhen. Development and validation of a preoperative nomogram predictive model for proximal gastric cancer with microscopic positive margin [J]. Tianjin Medical Journal, 2024, 52(8): 845-849. |
[3] | XUE Yuheng, MAO Ning, LIU Wenqiang, YANG Qianqian, XU Yan, WANG Jun. Construction and validation of a risk prediction model for bronchopulmonary dysplasia based on early platelet-related parameters [J]. Tianjin Medical Journal, 2024, 52(7): 748-754. |
[4] | WANG Min, WANG Longsheng, CHEN Lei. Construction of a prediction model for lumbar fracture in patients with osteoporosis [J]. Tianjin Medical Journal, 2024, 52(7): 766-769. |
[5] | HAN Qin, HAN Xiuli, CHEN Weiran. Analysis of factors affecting depressive disorders after rehabilitation therapy in elderly stroke patients [J]. Tianjin Medical Journal, 2024, 52(6): 639-642. |
[6] | WANG Ling, LONG Dengyan. Construction of acquired weakness risk prediction model in intensive care unit [J]. Tianjin Medical Journal, 2024, 52(5): 486-489. |
[7] | ZHENG Kangpeng, TANG Xinguo, XU Qi, FAN Yuting, LIANG Bo, FU Xiaowei, FANG Lu. Nomogram construction and validation for predicting the possibility successful implementation of radical surgery in gallbladder cancer patients [J]. Tianjin Medical Journal, 2024, 52(5): 536-540. |
[8] | XU Yang, YUAN Yu, GAO Jinmei. Diagnostic significance of ultrasonography on free-floating thrombus shedding in deep vein of lower extremity in fracture patients [J]. Tianjin Medical Journal, 2024, 52(5): 548-551. |
[9] | FENG Liting, LI Li, XIE Xin, WANG Xing. Analysis of influencing factors of chronic obstructive pulmonary disease in permanent residents in some area of Tianjin [J]. Tianjin Medical Journal, 2024, 52(4): 427-431. |
[10] | JI Xiaojuan, HAN Hao, ZHANG Lixia. Pathogenic bacteria distribution, drug resistance changes and risk factors of death in patients with acute myeloid leukemia complicated with bloodstream infection [J]. Tianjin Medical Journal, 2024, 52(2): 167-171. |
[11] | ZHANG Jingjing, ZHAO Wendong, ZHAO Yuan, ZHANG Qingxia, DU Jia, LIU Yanxia. Predictive value of CALLY index for depression after ischemic stroke [J]. Tianjin Medical Journal, 2024, 52(12): 1300-1304. |
[12] | GU Wei, ZHANG Huina, HOU Liping, YU Min, CHENG Lirong. Correlation between lipid correlation index and diabetic kidney disease [J]. Tianjin Medical Journal, 2024, 52(12): 1308-1312. |
[13] | YU Ping, ZHOU Min, SU Dan. Construction and validation of chemotherapy resistance prediction model for ovarian cancer [J]. Tianjin Medical Journal, 2024, 52(11): 1177-1182. |
[14] | LIANG Yaobing, FU Zhenhua, ZHAO Ziyue, LUO Jianming, CHENG Dongyu, JIANG Haixing, QIN Shanyu. Risk factors and prediction model of acute respiratory failure in patients with hypertriglyceridemic acute pancreatitis [J]. Tianjin Medical Journal, 2024, 52(11): 1183-1187. |
[15] | YANG Kai, HOU Dingcong, DUAN Shaoxian, BI Yi, XIE Yan, ZHANG Li, JIANG Wentao. Predictive values of PNI, LMR and MELD for early lung infection after liver transplantation [J]. Tianjin Medical Journal, 2024, 52(10): 1041-1045. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||