Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (4): 441-444.doi: 10.11958/20221298
• Review • Previous Articles Next Articles
LI Xiaoxiao1(), BAI Yanjie2,*(
), WANG Yan1, ZHANG Yongchuang1, CHEN Limin1, CHEN Shuying1
Received:
2022-08-19
Revised:
2022-11-21
Published:
2023-04-15
Online:
2023-04-20
Contact:
BAI Yanjie
E-mail:1173987953@qq.com;baiyj66@126.com
LI Xiaoxiao, BAI Yanjie, WANG Yan, ZHANG Yongchuang, CHEN Limin, CHEN Shuying. Research progress on the relationship between high fat diet and cognitive impairment[J]. Tianjin Medical Journal, 2023, 51(4): 441-444.
CLC Number:
[1] | JIA L, QUAN M, FU Y, et al. Dementia in China:epidemiology,clinical management,and research advances[J]. Lancet Neurol, 2020, 19(1):81-92. doi:10.1016/S1474-4422(19)30290-X. |
[2] | ZHENG Y, CHEN Z Y, MA W J, et al. B Vitamins supplementation can improve cognitive functions and may relate to the enhancement of transketolase activity in a rat model of cognitive impairment associated with high-fat diets[J]. Curr Med Sci, 2021, 41(5):847-856. doi:10.1007/s11596-021-2456-5. |
[3] | WANG R, ZHOU Z, WANG D, et al. Caloric restriction ameliorates high-fat diet induced cognitive deficits through attenuating neuroinflammation via the TREM2-PI3K/AKT signaling pathway[J]. Food Funct, 2021, 12(14):6464-6478. doi:10.1039/d0fo02946g. |
[4] | 赵久红, 童佳婷, 沈郅珺, 等. 环状RNA与氧化应激互作机制的研究进展[J]. 上海交通大学学报(医学版), 2022, 42(3):393-399. |
ZHAO J H, TONG J T, SHEN Z J, et al. Research progress on the interaction mechanism between circular RNA and oxidative stress[J]. Journal of Shanghai Jiaotong University(Medical Science), 2022, 42(3):393-399. doi:10.3969/j.issn.1674-8115.2022.03.02. | |
[5] | MATSUZAWA-NAGATA N, TAKAMURA T, ANDO H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity[J]. Metabolism, 2008, 57(8):1071-1077. doi:10.1016/j.metabol.2008.03.010. |
[6] | TANGVARASITTICHAI S. Oxidative stress,insulin resistance,dyslipidemia and type 2 diabetes mellitus[J]. World J Diabetes, 2015, 6(3):456-480. doi:10.4239/wjd.v6.i3.456. |
[7] | TAN B L, NORHAIZAN M E. Effect of high-fat diets on oxidative stress,cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11):2579. doi:10.3390/nu11112579. |
[8] | WANG Z, GE Q, WU Y, et al. Impairment of long-term memory by a short-term high-fat diet via hippocampal oxidative stress and alterations in synaptic plasticity[J]. Neuroscience, 2020, 424:24-33. doi:10.1016/j.neuroscience.2019.10.050. |
[9] | STRANAHAN A M, CUTLER R G, BUTTON C, et al. Diet-induced elevations in serum cholesterol are associated with alterations in hippocampal lipid metabolism and increased oxidative stress[J]. J Neurochem, 2011, 118(4):611-615. doi:10.1111/j.1471-4159.2011.07351.x. |
[10] | NEHA, KUMAR A, JAGGI A S, et al. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(8):777-787. doi:10.1007/s00210-014-0990-4. |
[11] | XU J, GAO H, ZHANG L, et al. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet[J]. J Pineal Res, 2019, 67(2):e12584. doi:10.1111/jpi.12584. |
[12] | YANG X, ZHENG M, HAO S, et al. Curdlan prevents the cognitive deficits induced by a high-fat diet in mice via the gut-brain axis[J]. Front Neurosci, 2020, 14:384. doi:10.3389/fnins.2020.00384. |
[13] | BAUFELD C, OSTERLOH A, PROKOP S, et al. High-fat diet-induced brain region-specific phenotypic spectrum of CNS resident microglia[J]. Acta Neuropathol, 2016, 132(3):361-375. doi:10.1007/s00401-016-1595-4. |
[14] | 郭海, 姚巧玲. 胰岛素在中枢和外周调控机体食欲机制的研究进展[J]. 医学综述, 2022, 28(9):1771-1775. |
GUO H, YAO Q L. Research progress in mechanism of insulin in central and peripheral regulation of appetite[J]. Medical Recapitulate, 2022, 28(9):1771-1775. doi:1006-2084(2022)09-1771-05. | |
[15] | XIONG J, DENG I, KELLINY S, et al. Long term high fat diet induces metabolic disorders and aggravates behavioral disorders and cognitive deficits in MAPT P301L transgenic mice[J]. Metab Brain Dis, 2022, 37(6):1941-1957. doi:10.1007/s11011-022-01029-x. |
[16] | SHARMA S, TALIYAN R. Synergistic effects of GSK-3β and HDAC inhibitors in intracerebroventricular streptozotocin-induced cognitive deficits in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2015, 388(3):337-349. doi:10.1007/s00210-014-1081-2. |
[17] | OLDE ENGBERINK A, HERNANDEZ R, DE GRAAN P, et al. Rapamycin-sensitive late-LTP is enhanced in the hippocampus of IL-6 transgenic mice[J]. Neuroscience, 2017, 367:200-210. doi:10.1016/j.neuroscience.2017.10.040. |
[18] | KISHI T, HIROOKA Y, NAGAYAMA T, et al. Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor:tropomyosin-related kinase B in hippocampus of obesity-induced hypertensive rats[J]. Int Heart J, 2015, 56(1):110-115. doi:10.1536/ihj.14-168. |
[19] | IBRAHIM A M, CHAUHAN L, BHARDWAJ A, et al. Brain-derived neurotropic factor in neurodegenerative disorders[J]. Biomedicines, 2022, 10(5):1143. doi:10.3390/biomedicines10051143. |
[20] | ZHANG J, CAI C Y, WU H Y, et al. CREB-mediated synaptogenesis and neurogenesis is crucial for the role of 5-HT1a receptors in modulating anxiety behaviors[J]. Sci Rep, 2016, 6:29551. doi:10.1038/srep29551. |
[21] | DINGESS P M, DARLING R A, KURT DOLENCE E, et al. Exposure to a diet high in fat attenuates dendritic spine density in the medial prefrontal cortex[J]. Brain Struct Funct, 2017, 222(2):1077-1085. doi:10.1007/s00429-016-1208-y. |
[22] | YOON G, CHO K A, SONG J, et al. Transcriptomic analysis of high fat diet fed mouse brain cortex[J]. Front Genet, 2019, 10:83. doi:10.3389/fgene.2019.00083. |
[23] | NATION D A, SWEENEY M D, MONTAGNE A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction[J]. Nat Med, 2019, 25(2):270-276. doi:10.1038/s41591-018-0297-y. |
[24] | OGATA S, ITO S, MASUDA T, et al. Changes of blood-brain barrier and brain parenchymal protein expression levels of mice under different insulin-resistance conditions induced by high-fat diet[J]. Pharm Res, 2019, 36(10):141. doi:10.1007/s11095-019-2674-8. |
[25] | KHAN A, KALARIA R N, CORBETT A, et al. Update on vascular dementia[J]. J Geriatr Psychiatry Neurol, 2016, 29(5):281-301. doi:10.1177/0891988716654987. |
[26] | 孙美, 侯晓夏, 程虹. 慢性脑灌注不足与血管性认知损害[J]. 国际脑血管病杂志, 2018, 26(12):921-926. |
SUN M, HOU X X, CHEN H. Chronic cerebral hypoperfusion and vascular cognitive impairment[J]. International Journal of Cerebrovascular Diseases, 2018, 26(12):921-926. doi:10.3760/cma.j.issn.1673-4165.2018.12.009. | |
[27] | BRACKO O, VINARCSIK L K, CRUZ HERNáNDEZ J C, et al. High fat diet worsens Alzheimer's disease-related behavioral abnormalities and neuropathology in APP/PS1 mice,but not by synergistically decreasing cerebral blood flow[J]. Sci Rep, 2020, 10(1):9884. doi:10.1038/s41598-020-65908-y. |
[28] | MANEECHOTE C, CHUNCHAI T, APAIJAI N, et al. Pharmacological targeting of mitochondrial fission and fusion alleviates cognitive impairment and brain pathologies in pre-diabetic rats[J]. Mol Neurobiol, 2022, 59(6):3690-3702. doi:10.1007/s12035-022-02813-7. |
[29] | WANG J, ZHANG W, LI M, et al. The new coumarin compound Bis 3 ameliorates cognitive disorder and suppresses brain-intestine-liver systematic oxidative stress in high-fat diet mice[J]. Biomed Pharmacother, 2021, 137:111293. doi:10.1016/j.biopha.2021.111293. |
[30] | PARK S K, LEE H L, KANG J Y, et al. Peanut(Arachis hypogaea)sprout prevents high-fat diet-induced cognitive impairment by improving mitochondrial function[J]. Sci Rep, 2022, 12(1):6213. doi:10.1038/s41598-022-10520-5. |
[31] | MANDWIE M, KARUNIA J, NIAZ A, et al. Metformin treatment attenuates brain inflammation and rescues PACAP/VIP neuropeptide alterations in mice fed a high-fat diet[J]. Int J Mol Sci, 2021, 22(24):13660. doi:10.3390/ijms222413660. |
[32] | SUN P, WANG M, LI Z, et al. Eucommiae cortex polysaccharides mitigate obesogenic diet-induced cognitive and social dysfunction via modulation of gut microbiota and tryptophan metabolism[J]. Theranostics, 2022, 12(8):3637-3655. doi:10.7150/thno.72756. |
[33] | PARANDE F, DAVE A, PARK E J, et al. Effect of dietary grapes on female C57BL6/J mice consuming a high-fat diet:Behavioral and genetic changes[J]. Antioxidants(Basel), 2022, 11(2):414. doi:10.3390/antiox11020414. |
[34] | EL GAAMOUCH F, LIN H Y, WANG Q, et al. Peripheral and cognitive benefits of physical exercise in a mouse model of midlife metabolic syndrome[J]. Sci Rep, 2022, 12(1):3260. doi:10.1038/s41598-022-07252-x. |
[35] | MACIEJCZYK M, ŻEBROWSKA E, NESTEROWICZ M, et al. α-lipoic acid reduces ceramide synthesis and neuroinflammation in the hypothalamus of insulin-resistant rats,while in the cerebral cortex diminishes the β-amyloid accumulation[J]. J Inflamm Res, 2022, 15:2295-2312. doi:10.2147/JIR.S358799. |
[36] | JI Y, LANG X, WANG W, et al. Lactobacillus paracasei ameliorates cognitive impairment in high-fat induced obese mice via insulin signaling and neuroinflammation pathways[J]. Food Funct, 2021, 12(18):8728-8737. doi:10.1039/d1fo01320c. |
[37] | 王静芝, 杜艳军, 陈丽, 等. 电针对高脂饮食诱导的胰岛素抵抗大鼠下丘脑β淀粉样蛋白、Tau蛋白磷酸化水平与糖原合成酶激酶-3的影响[J]. 中国中医基础医学杂志, 2021, 27(5):760-764. |
WANG J Z, DU Y J, CHEN L, et al. Effects of electro-acupuncture on the amyloid protein β and phosphorylation levels of Tau protein and GSK-3 in hypothalamus of insulin resistance rats induced by high-fat diet[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2021, 27(5):760-764. doi:10.19945/j.cnki.issn.1006-3250.2021.05.016. | |
[38] | HUBER G, OGRODNIK M, WENZEL J, et al. Telmisartan prevents high-fat diet-induced neurovascular impairments and reduces anxiety-like behavior[J]. J Cereb Blood Flow Metab, 2021, 41(9):2356-2369. doi:10.1177/0271678X211003497. |
[1] | FAN Zhehua, LIU Jianrong. Advances in the study of the correlation between incretin hormone GIP and polycystic ovary syndrome [J]. Tianjin Medical Journal, 2024, 52(9): 996-999. |
[2] | WANG Xinshuang, AN Yajuan, GUAN Xiuju, LI Jiao, LIU Yue, WEI Liping, QI Xin. Study of magnesium isoglycyrrhizinate in ameliorating cisplatin induced myocardial injury in rats [J]. Tianjin Medical Journal, 2024, 52(8): 809-814. |
[3] | WU Bo, ZHU Zhuonong, ZHENG Lijuan, CHEN Junru. Effects of matrine on inflammation, oxidative stress and wound healing in atopic dermatitis [J]. Tianjin Medical Journal, 2024, 52(6): 566-571. |
[4] | MU Jingran, LUO Yan, LIANG Xuan, XU Tao, ZENG Junwei, LIU Xiaohong. Research progress on the activation of complement system is involved in the pathogenesis of Alzheimer's disease [J]. Tianjin Medical Journal, 2024, 52(6): 663-668. |
[5] | LI Min, GONG Jian, WU Weiwei, LIU Qiao. Research progress on the role of Nrf2/HO-1 pathway in psoriasis [J]. Tianjin Medical Journal, 2024, 52(5): 552-556. |
[6] | JIA Xirui, LIU Lijie. The role and research progress of microglia in sepsis related encephalopathy [J]. Tianjin Medical Journal, 2024, 52(5): 557-560. |
[7] | XIE Youcheng, WANG Fei, XU Jin, YU Xiaohui. Research progress of SIRT1 in the pathogenesis of diabetic cardiomyopathy [J]. Tianjin Medical Journal, 2024, 52(4): 443-448. |
[8] | CHEN Jing, WEI Yunjiao, LUO Chao, HUANG Lihua, CHEN Cheng, DUAN Shasha. The mechanism of Wumei pill on ulcerative colitis in mice based on Nrf2/ARE antioxidant stress pathway [J]. Tianjin Medical Journal, 2024, 52(3): 278-254. |
[9] | XIAO Yuqian, SUN Kexin, WAN Jun, CHEN Shuying, CHEN Limin, WANG Yan, BAI Yanjie. Research progress of RNA m6A methylation in post-stroke cognitive impairment [J]. Tianjin Medical Journal, 2024, 52(3): 331-336. |
[10] | CHEN Huimin, JIA Hongfeng, JIANG Tingting, JIA Yaohui. Effects of intraoperative blood glucose fluctuation and postoperative insulin resistance on cognitive dyfunction in elderly patients after thoracoscopic radical resection of lung cancer under general anesthesia [J]. Tianjin Medical Journal, 2024, 52(2): 201-205. |
[11] | MIAO Chunbo, XU Yingchun, CHANG Yifang. Phlorizin allevistes oxidative stress and apoptosis of rat cardiac myocytes H9C2 induced by hypoxia/reoxygenation by down-regulating miR-125a-5p [J]. Tianjin Medical Journal, 2024, 52(12): 1233-1238. |
[12] | TIAN Yajing, YANG Xue, WANG Jing, GE Wenjie, HE Yuling. Influence of formononetin on oxidative stress injury in gestational diabetes mellitus rats [J]. Tianjin Medical Journal, 2023, 51(7): 734-738. |
[13] | LI Yanping, WANG Xietao, SHI Libin, LIU Qiong. Influence of resveratrol on H2O2-induced ferroptosis in alveolar epithelial cells by regulating the Nrf2-GPX4 pathway [J]. Tianjin Medical Journal, 2023, 51(6): 568-572. |
[14] | ZHOU Mengzhu, ZHANG Haifeng, ZHANG Xue, ZHANG Yue, CHENG Lijun, LIU Tong, LIU Changle. Effect of NLRP3-CAMKⅡ-IRE-1α pathway induced oxidative stress on ventricular remodeling in diabetic rats [J]. Tianjin Medical Journal, 2023, 51(6): 580-585. |
[15] | ZHU Shuping, MA Li, YE Xiaolin, GU Junfei. Relationship between changes of gut microbes and metabolite levels and insulin resistance in patients with gestational diabetes mellitus at different stages of pregnancy [J]. Tianjin Medical Journal, 2023, 51(6): 624-627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||