[1] |
VAN ES M A, HARDIMAN O, CHIO A, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2017, 390(10107):2084-2098. doi:10.1016/S0140-6736(17)31287-4.
|
[2] |
MEJZINI R, FLYNN L L, PITOUT I L, et al. ALS genetics,mechanisms,and therapeutics:Where are we now?[J]. Front Neurosci, 2019, 13:1310. doi:10.3389/fnins.2019.01310.
|
[3] |
LYON M S, WOSISKI-KUHN M, GILLESPIE R, et al. Inflammation,immunity,and amyotrophic lateral sclerosis:I. etiology and pathology[J]. Muscle Nerve, 2019, 59(1):10-22. doi:10.1002/mus.26289.
|
[4] |
KAPELLOS T S, BONAGURO L, GEMÜND I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases[J]. Front Immunol, 2019, 10:2035. doi:10.3389/fimmu.2019.02035.
|
[5] |
ZHAO W, BEERS D R, HOOTEN K G, et al. Characterization of gene expression phenotype in amyotrophic lateral sclerosis monocytes[J]. JAMA Neurol, 2017, 74(6):677-685. doi:10.1001/jamaneurol.2017.0357.
|
[6] |
MCGILL R B, STEYN F J, NGO S T, et al. Monocytes and neutrophils are associated with clinical features in amyotrophic lateral sclerosis[J]. Brain Commun, 2020, 2(1):fcaa013. doi:10.1093/braincomms/fcaa013.
|
[7] |
CUI C, INGRE C, YIN L, et al. Correlation between leukocyte phenotypes and prognosis of amyotrophic lateral sclerosis[J]. Elife, 2022, 11:e74065. doi:10.7554/eLife.74065.
|
[8] |
ZONDLER L, MÜLLER K, KHALAJI S, et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients[J]. Acta Neuropathol, 2016, 132(3):391-411. doi:10.1007/s00401-016-1548-y.
|
[9] |
DU Y, ZHAO W, THONHOFF J R, et al. Increased activation ability of monocytes from ALS patients[J]. Exp Neurol, 2020, 328:113259. doi:10.1016/j.expneurol.2020.113259.
|
[10] |
BUTOVSKY O, SIDDIQUI S, GABRIELY G, et al. Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS[J]. J Clin Invest, 2012, 122(9):3063-3087. doi:10.1172/JCI62636.
|
[11] |
MURDOCK B J, ZHOU T, KASHLAN S R, et al. Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression[J]. JAMA Neurol, 2017, 74(12):1446-1454. doi:10.1001/jamaneurol.2017.2255.
|
[12] |
GAROFALO S, COCOZZA G, PORZIA A, et al. Natural killer cells modulate motor neuron-immune cell cross talk in models of amyotrophic lateral sclerosis[J]. Nat Commun, 2020, 11(1):1773. doi:10.1038/s41467-020-15644-8.
|
[13] |
MURDOCK B J, FAMIE J P, PIECUCH C E, et al. NK cells associate with ALS in a sex- and age-dependent manner[J]. JCI Insight, 2021, 6(11):e147129. doi:10.1172/jci.insight.147129.
|
[14] |
TONDO G, IACCARINO L, CERAMI C, et al. 11C-PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis[J]. Ann Clin Transl Neurol, 2020, 7(9):1513-1523. doi:10.1002/acn3.51112.
|
[15] |
GRAVEL M, BÉLAND L C, SOUCY G, et al. IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase 1[J]. J Neurosci, 2016, 36(3):1031-1048. doi:10.1523/JNEUROSCI.0854-15.2016.
|
[16] |
XIE M, LIU Y U, ZHAO S, et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration[J]. Nat Neurosci, 2022, 25(1):26-38. doi:10.1038/s41593-021-00975-6.
|
[17] |
MASSENZIO F, PEÑA-ALTAMIRA E, PETRALLA S, et al. Microglial overexpression of fALS-linked mutant SOD1 induces SOD1 processing impairment,activation and neurotoxicity and is counteracted by the autophagy inducer trehalose[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(12):3771-3785. doi:10.1016/j.bbadis.2018.10.013.
|
[18] |
QUEK H, CUNÍ-LÓPEZ C, STEWART R, et al. ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated with disease progression[J]. J Neuroinflammation, 2022, 19(1):58. doi:10.1186/s12974-022-02421-1.
|
[19] |
DEORA V, LEE J D, ALBORNOZ E A, et al. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins[J]. Glia, 2020, 68(2):407-421. doi:10.1002/glia.23728.
|
[20] |
ALLEN S P, HALL B, CASTELLI L M, et al. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis[J]. Brain, 2019, 142(3):586-605. doi:10.1093/brain/awy353.
|
[21] |
GOMES C, SEQUEIRA C, LIKHITE S, et al. Neurotoxic astrocytes directly converted from sporadic and familial als patient fibroblasts reveal signature diversities and mir-146a theragnostic potential in specific subtypes[J]. Cells, 2022, 11(7):1186. doi:10.3390/cells11071186.
|
[22] |
GRANATIERO V, SAYLES N M, SAVINO A M, et al. Modulation of the IGF1R-MTOR pathway attenuates motor neuron toxicity of human ALS SOD1(G93A)astrocytes[J]. Autophagy, 2021, 17(12):4029-4042. doi:10.1080/15548627.2021.1899682.
|
[23] |
VOET S, SRINIVASAN S, LAMKANFI M, et al. Inflammasomes in neuroinflammatory and neurodegenerative diseases[J]. EMBO Mol Med, 2019, 11(6):e10248. doi:10.15252/emmm.201810248.
|
[24] |
JOHANN S, HEITZER M, KANAGARATNAM M, et al. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients[J]. Glia, 2015, 63(12):2260-2273. doi:10.1002/glia.22891.
|
[25] |
SONG S, MIRANDA C J, BRAUN L, et al. Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis[J]. Nat Med, 2016, 22(4):397-403. doi:10.1038/nm.4052.
|
[26] |
ZIFF O J, CLARKE B E, TAHA D M, et al. Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states[J]. Genome Res, 2022, 32(1):71-84. doi:10.1101/gr.275939.121.
|
[27] |
YANG Y, PAN D, GONG Z, et al. Decreased blood CD4+ T lymphocyte helps predict cognitive impairment in patients with amyotrophic lateral sclerosis[J]. BMC Neurol, 2021, 21(1):157. doi:10.1186/s12883-021-02185-w.
|
[28] |
GUSTAFSON M P, STAFF N P, BORNSCHLEGL S, et al. Comprehensive immune profiling reveals substantial immune system alterations in a subset of patients with amyotrophic lateral sclerosis[J]. PLoS One, 2017, 12(7):e0182002. doi:10.1371/journal.pone.0182002.
|
[29] |
COQUE E, SALSAC C, ESPINOSA-CARRASCO G, et al. Cytotoxic CD8(+) T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons[J]. Proc Natl Acad Sci U S A, 2019, 116(6):2312-2317. doi:10.1073/pnas.1815961116.
|
[30] |
NARDO G, TROLESE M C, VERDERIO M, et al. Counteracting roles of MHCI and CD8(+) T cells in the peripheral and central nervous system of ALS SOD1(G93A) mice[J]. Mol Neurodegener, 2018, 13(1):42. doi:10.1186/s13024-018-0271-7.
|
[31] |
NARDO G, TROLESE M C, DE VITO G, et al. Immune response in peripheral axons delays disease progression in SOD1(G93A) mice[J]. J Neuroinflammation, 2016, 13(1):261. doi:10.1186/s12974-016-0732-2.
|
[32] |
LUCCA L E, DOMINGUEZ-VILLAR M. Modulation of regulatory T cell function and stability by co-inhibitory receptors[J]. Nat Rev Immunol, 2020, 20(11):680-693. doi:10.1038/s41577-020-0296-3.
|
[33] |
SHEEAN R K, MCKAY F C, CRETNEY E, et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis:A study of humans and a transgenic mouse model[J]. JAMA Neurol, 2018, 75(6):681-689. doi:10.1001/jamaneurol.2018.0035.
|
[34] |
BEERS D R, ZHAO W, WANG J, et al. ALS patients' regulatory T lymphocytes are dysfunctional,and correlate with disease progression rate and severity[J]. JCI Insight, 2017, 2(5):e89530. doi:10.1172/jci.insight.89530.
|