Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (6): 580-585.doi: 10.11958/20230012
• Experimental Research • Previous Articles Next Articles
ZHOU Mengzhu(), ZHANG Haifeng, ZHANG Xue, ZHANG Yue, CHENG Lijun, LIU Tong, LIU Changle
Received:
2023-01-03
Revised:
2023-02-27
Published:
2023-06-15
Online:
2023-06-20
Contact:
△E-mail:ZHOU Mengzhu, ZHANG Haifeng, ZHANG Xue, ZHANG Yue, CHENG Lijun, LIU Tong, LIU Changle. Effect of NLRP3-CAMKⅡ-IRE-1α pathway induced oxidative stress on ventricular remodeling in diabetic rats[J]. Tianjin Medical Journal, 2023, 51(6): 580-585.
CLC Number:
组别 | 血糖(mmol/L) | 体质量(g) | 心室体质量比(‰) | 收缩压(mmHg) | 舒张压(mmHg) | 心率(次/min) | 肺动脉血流加速 时间(ms) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTL组 | 7.67±1.32 | 424.20±33.97 | 2.93±0.17 | 119.30±9.37 | 85.67±7.17 | 346.50±30.35 | 32.22±3.16 | |||||||
DM组 | 27.72±5.73a | 233.20±65.85a | 3.35±0.25a | 126.20±7.94 | 82.33±9.42 | 295.20±43.80 | 29.90±6.87 | |||||||
GLB组 | 28.33±2.24a | 267.50±68.76a | 3.08±0.12 | 120.50±10.77 | 88.17±8.35 | 346.80±29.71 | 32.58±4.72 | |||||||
F | 62.870** | 18.260** | 7.830** | 0.902 | 0.735 | 4.275* | 0.476 | |||||||
组别 | 平均肺动脉压(mmHg) | 收缩期室间隔 厚度(mm) | 舒张期室间隔 厚度(mm) | 收缩期左心室 前壁厚度(mm) | 舒张期左心室 前壁厚度(mm) | 收缩期左心室 后壁厚度(mm) | 舒张期左心室 后壁厚度(mm) | |||||||
CTL组 | 70.03±1.96 | 2.69±0.25 | 1.63±0.24 | 2.89±0.19 | 1.76±0.06 | 2.73±0.42 | 1.96±0.25 | |||||||
DM组 | 71.46±4.26 | 3.41±0.33a | 2.06±0.26a | 3.48±0.42a | 2.39±0.36a | 3.00±0.52 | 2.11±0.45 | |||||||
GLB组 | 69.80±2.92 | 2.62±0.26b | 1.54±0.22b | 2.24±0.32ab | 1.47±0.17b | 2.64±0.41 | 1.71±0.39 | |||||||
F | 0.476 | 14.350** | 8.134** | 22.140** | 24.910** | 1.039 | 1.785 |
Tab.1 Comparison of baseline characteristics, hemodynamic and echocardiographic indexes between the three groups
组别 | 血糖(mmol/L) | 体质量(g) | 心室体质量比(‰) | 收缩压(mmHg) | 舒张压(mmHg) | 心率(次/min) | 肺动脉血流加速 时间(ms) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTL组 | 7.67±1.32 | 424.20±33.97 | 2.93±0.17 | 119.30±9.37 | 85.67±7.17 | 346.50±30.35 | 32.22±3.16 | |||||||
DM组 | 27.72±5.73a | 233.20±65.85a | 3.35±0.25a | 126.20±7.94 | 82.33±9.42 | 295.20±43.80 | 29.90±6.87 | |||||||
GLB组 | 28.33±2.24a | 267.50±68.76a | 3.08±0.12 | 120.50±10.77 | 88.17±8.35 | 346.80±29.71 | 32.58±4.72 | |||||||
F | 62.870** | 18.260** | 7.830** | 0.902 | 0.735 | 4.275* | 0.476 | |||||||
组别 | 平均肺动脉压(mmHg) | 收缩期室间隔 厚度(mm) | 舒张期室间隔 厚度(mm) | 收缩期左心室 前壁厚度(mm) | 舒张期左心室 前壁厚度(mm) | 收缩期左心室 后壁厚度(mm) | 舒张期左心室 后壁厚度(mm) | |||||||
CTL组 | 70.03±1.96 | 2.69±0.25 | 1.63±0.24 | 2.89±0.19 | 1.76±0.06 | 2.73±0.42 | 1.96±0.25 | |||||||
DM组 | 71.46±4.26 | 3.41±0.33a | 2.06±0.26a | 3.48±0.42a | 2.39±0.36a | 3.00±0.52 | 2.11±0.45 | |||||||
GLB组 | 69.80±2.92 | 2.62±0.26b | 1.54±0.22b | 2.24±0.32ab | 1.47±0.17b | 2.64±0.41 | 1.71±0.39 | |||||||
F | 0.476 | 14.350** | 8.134** | 22.140** | 24.910** | 1.039 | 1.785 |
组别 | 左心室心外膜传导 速度(m/s) | 左心室绝对 不均匀性 | 左心室不均匀 指数 | |||
---|---|---|---|---|---|---|
CTL组 | 1.05±0.27 | 2.25±0.23 | 1.66±0.19 | |||
DM组 | 0.52±0.24a | 4.40±2.21 | 2.56±0.89 | |||
GLB组 | 1.08±0.29b | 1.68±0.20b | 1.49±0.20b | |||
F | 7.066** | 6.230* | 5.635* | |||
组别 | 右心室心外膜 传导速度(m/s) | 右心室绝对 不均匀性 | 右心室不均匀 指数 | |||
CTL组 | 0.87±0.20 | 2.32±0.47 | 1.38±0.13 | |||
DM组 | 0.58±0.15a | 4.68±3.09 | 2.01±0.43a | |||
GLB组 | 1.09±0.16b | 2.39±0.17 | 1.65±0.35 | |||
F | 11.620** | 2.759 | 4.620* |
Tab.2 Comparison of epicardial activation mapping of rats between the three groups
组别 | 左心室心外膜传导 速度(m/s) | 左心室绝对 不均匀性 | 左心室不均匀 指数 | |||
---|---|---|---|---|---|---|
CTL组 | 1.05±0.27 | 2.25±0.23 | 1.66±0.19 | |||
DM组 | 0.52±0.24a | 4.40±2.21 | 2.56±0.89 | |||
GLB组 | 1.08±0.29b | 1.68±0.20b | 1.49±0.20b | |||
F | 7.066** | 6.230* | 5.635* | |||
组别 | 右心室心外膜 传导速度(m/s) | 右心室绝对 不均匀性 | 右心室不均匀 指数 | |||
CTL组 | 0.87±0.20 | 2.32±0.47 | 1.38±0.13 | |||
DM组 | 0.58±0.15a | 4.68±3.09 | 2.01±0.43a | |||
GLB组 | 1.09±0.16b | 2.39±0.17 | 1.65±0.35 | |||
F | 11.620** | 2.759 | 4.620* |
组别 | NLRP3 | caspase-1 | CaMKⅡ |
---|---|---|---|
CTL组 | 0.80±0.27 | 0.41±0.19 | 1.17±0.16 |
DM组 | 1.26±0.33a | 0.81±0.10a | 1.50±0.28a |
GLB组 | 0.81±0.18b | 0.36±0.20b | 1.12±0.07b |
F | 5.814* | 12.320** | 7.092** |
组别 | IRE-1α | NOX2 | NOX4 |
CTL组 | 0.28±0.09 | 1.15±0.34 | 0.92±0.22 |
DM组 | 0.56±0.13a | 1.93±0.45a | 1.60±0.21a |
GLB组 | 0.34±0.10b | 1.25±0.25b | 0.92±0.21b |
F | 10.960** | 8.459** | 20.000** |
Tab.3 Comparison of NLRP3, caspase-1, CaMK Ⅱ, IRE-1α, NOX2 and NOX4 protein expression levels between the three groups
组别 | NLRP3 | caspase-1 | CaMKⅡ |
---|---|---|---|
CTL组 | 0.80±0.27 | 0.41±0.19 | 1.17±0.16 |
DM组 | 1.26±0.33a | 0.81±0.10a | 1.50±0.28a |
GLB组 | 0.81±0.18b | 0.36±0.20b | 1.12±0.07b |
F | 5.814* | 12.320** | 7.092** |
组别 | IRE-1α | NOX2 | NOX4 |
CTL组 | 0.28±0.09 | 1.15±0.34 | 0.92±0.22 |
DM组 | 0.56±0.13a | 1.93±0.45a | 1.60±0.21a |
GLB组 | 0.34±0.10b | 1.25±0.25b | 0.92±0.21b |
F | 10.960** | 8.459** | 20.000** |
[1] | ZHANG M, SUI W, XING Y, et al. Angiotensin Ⅳ attenuates diabetic cardiomyopathy via suppressing FoxO1-induced excessive autophagy,apoptosis and fibrosis[J]. Theranostics, 2021, 11(18):8624-8639. doi:10.7150/thno.48561. |
[2] | MURTAZA G, VIRK H U H, KHALID M, et al. Diabetic cardiomyopathy - A comprehensive updated review[J]. Prog Cardiovasc Dis, 2019, 62(4):315-326. doi:10.1016/j.pcad.2019.03.003. |
[3] | ZHANG X, DONG S, JIA Q, et al. The microRNA in ventricular remodeling: the miR-30 family[J]. Biosci Rep, 2019, 39(8):BSR20190788. doi:10.1042/BSR20190788. |
[4] | RITCHIE R H, ABEL E D. Basic mechanisms of diabetic heart disease[J]. Circ Res, 2020, 126(11):1501-1525. doi:10.1161/CIRCRESAHA.120.315913. |
[5] | HE Y, CHANG Y, PENG Y, et al. Glibenclamide directly prevents neuroinflammation by targeting SUR1-TRPM4-mediated NLRP3 inflammasome activation in microglia[J]. Mol Neurobiol, 2022, 59(10):6590-6607. doi:10.1007/s12035-022-02998-x. |
[6] | YANG J, YANG J, HUANG X, et al. Glibenclamide alleviates LPS-induced acute lung injury through NLRP3 inflammasome signaling pathway[J]. Mediators Inflamm, 2022, 2022:8457010. doi:10.1155/2022/8457010. |
[7] | ZHAN X, CHENG L, HUO N, et al. Sodium-glucose cotransporter-2 inhibitor alleviated atrial remodeling in STZ-induced diabetic rats by targeting TLR4 pathway[J]. Front Cardiovasc Med, 2022, 9:908037. doi:10.3389/fcvm.2022.908037. |
[8] | VAYKSHNORAYTE M A, OVECHKIN A O, AZAROV J E. The effect of diabetes mellitus on the ventricular epicardial activation and repolarization in mice[J]. Physiol Res, 2012, 61(4):363-370. doi:10.33549/physiolres.932245. |
[9] | TIAN J H, WU Q, HE Y X, et al. Zonisamide,an antiepileptic drug,alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress[J]. Acta Pharmacol Sin, 2021, 42(3):393-403. doi:10.1038/s41401-020-0461-z. |
[10] | PASSARELLI M, MACHADO U F F. AGEs-induced and endoplasmic reticulum stress/inflammation-mediated regulation of GLUT4 expression and atherogenesis in diabetesmellitus[J]. Cells, 2021, 11(1):104. doi:10.3390/cells11010104. |
[11] | MANGAN M S J, OLHAVA E J, ROUSH W R, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(9):688. doi:10.1038/nrd.2018.149. |
[12] | HUANG Y, XU W, ZHOU R. NLRP3 inflammasome activation and cell death[J]. Cell Mol Immunol, 2021, 18(9):2114-2127. doi:10.1038/s41423-021-00740-6. |
[13] | WU C, LU W, ZHANG Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis[J]. Immunity, 2019, 50(6):1401-1411.e4. doi:10.1016/j.immuni.2019.04.003. |
[14] | WU X, LIU Y, TU D, et al. Role of NLRP3-inflammasome/caspase-1/galectin-3 pathway on atrial remodeling in diabetic rabbits[J]. J Cardiovasc Transl Res, 2020, 13(5):731-740. doi:10.1007/s12265-020-09965-8. |
[15] | QIU X, WANG Q, HOU L, et al. Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse Parkinson's disease model[J]. Toxicol Lett, 2021, 349:1-11. doi:10.1016/j.toxlet.2021.05.008. |
[16] | SINGH S, SHAIMA A, AHMAD S, et al. Convergence of fructose-induced NLRP3 activation with oxidative stress and ER stress leading to hepatic steatosis[J]. Inflammation, 2023, 46(1):217-233. doi:10.1007/s10753-022-01727-9. |
[17] | DWIVEDI D K, JENA G B. NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress,inflammation,DNA damage and insulin signalling pathway[J]. Naunyn Schmiedebergs Arch Pharmacol, 2020, 393(4):705-716. doi:10.1007/s00210-019-01773-5. |
[18] | HEIJMAN J, MUNA A P, VELEVA T, et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation[J]. Circ Res, 2020, 127(8):1036-1055. doi:10.1161/CIRCRESAHA.120.316710. |
[19] | NIE J, TA N, LIU L, et al. Activation of CaMKII via ER-stress mediates coxsackievirus B3-induced cardiomyocyte apoptosis[J]. Cell Biol Int, 2020, 44(2):488-498. doi:10.1002/cbin.11249. |
[20] | MARCINIAK S J, CHAMBERS J E, RON D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov, 2022, 21(2):115-140. doi:10.1038/s41573-021-00320-3. |
[21] | REN J, BI Y, SOWERS J R, et al. Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases[J]. Nat Rev Cardiol, 2021, 18(7):499-521. doi:10.1038/s41569-021-00511-w. |
[22] | HETZ C, ZHANG K, KAUFMAN R J. Mechanisms,regulation and functions of the unfolded protein response[J]. Nat Rev Mol Cell Biol, 2020, 21(8):421-438. doi:10.1038/s41580-020-0250-z. |
[23] | WADGAONKAR P, CHEN F. Connections between endoplasmic reticulum stress-associated unfolded protein response,mitochondria,and autophagy in arsenic-induced carcinogenesis[J]. Semin Cancer Biol, 2021, 76:258-266. doi:10.1016/j.semcancer.2021.04.004. |
[24] | YARIBEYGI H, LHAF F, SATHYAPALAN T, et al. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy:Implications for lowering tissue damage[J]. Life Sci, 2019, 231:116538. doi:10.1016/j.lfs.2019.06.013. |
[25] | YARIBEYGI H, SATHYAPALAN T, ATKIN S L, et al. Molecular mechanisms linking oxidative stress and diabetes mellitus[J]. Oxid Med Cell Longev, 2020, 2020:8609213. doi:10.1155/2020/8609213. |
[26] | IGHODARO O M. Molecular pathways associated with oxidative stress in diabetes mellitus[J]. Biomed Pharmacother, 2018, 108:656-662. doi:10.1016/j.biopha.2018.09.058. |
[27] | LIU X, HUSSAIN R, MEHMOOD K, et al. Mitochondrial-endoplasmic reticulum communication-mediated oxidative stress and autophagy[J]. Biomed Res Int, 2022, 2022:6459585. doi:10.1155/2022/6459585. |
[28] | POZNYAK A, GRECHKO A V, POGGIO P, et al. The diabetes mellitus-atherosclerosis connection:The role of lipid and glucose metabolism and chronic inflammation[J]. Int J Mol Sci, 2020, 21(5):1835. doi:10.3390/ijms21051835. |
[29] | ZEESHAN H M, LEE G H, KIM H R, et al. Endoplasmic reticulum stress and associated ROS[J]. Int J Mol Sci, 2016, 17(3):327. doi:10.3390/ijms17030327. |
[1] | WANG Xinshuang, AN Yajuan, GUAN Xiuju, LI Jiao, LIU Yue, WEI Liping, QI Xin. Study of magnesium isoglycyrrhizinate in ameliorating cisplatin induced myocardial injury in rats [J]. Tianjin Medical Journal, 2024, 52(8): 809-814. |
[2] | LIN Feng, CHEN Lingxiong, LIU Yu, ZHANG Xuming, YIN Zhida, LIN Tanhui, LIU Zunrong. Construction of long term restenosis prediction model for patients with severe subpatellar artery lesions in type 2 diabetes treated with paclitaxel coated balloon [J]. Tianjin Medical Journal, 2024, 52(8): 830-834. |
[3] | ZHONG Min, SHI Zhen, ZHOU Jinsong, LI Jinjie. Effects of GABA signaling pathway on endoplasmic reticulum stress and mitochondrial autophagy in septic rats with acute lung injury [J]. Tianjin Medical Journal, 2024, 52(7): 733-737. |
[4] | WANG Xian, LIU Xiaming, CHEN Manyu, ZHAO Jun, WANG Lidong. Construction and verification of prediction model of type 2 diabetic nephropathy based on machine learning [J]. Tianjin Medical Journal, 2024, 52(7): 775-780. |
[5] | WU Bo, ZHU Zhuonong, ZHENG Lijuan, CHEN Junru. Effects of matrine on inflammation, oxidative stress and wound healing in atopic dermatitis [J]. Tianjin Medical Journal, 2024, 52(6): 566-571. |
[6] | WANG Junyi, LI Chen, WU Xinyue, DING Xinyu, WAN Chunxiao. Effect and mechanism of early exercise intervention on cerebral nerve myelin in rats with cerebral ischemia [J]. Tianjin Medical Journal, 2024, 52(6): 589-594. |
[7] | LI Min, GONG Jian, WU Weiwei, LIU Qiao. Research progress on the role of Nrf2/HO-1 pathway in psoriasis [J]. Tianjin Medical Journal, 2024, 52(5): 552-556. |
[8] | HUANG Yu, HE Ruiying, LIU Sen, CHEN Kaiyuan, LI Meiyun, CHENG Jianye, WU Yan. Study on the effect of Chlorella extract on promoting skin wound healing in diabetic mice [J]. Tianjin Medical Journal, 2024, 52(4): 337-345. |
[9] | XIE Youcheng, WANG Fei, XU Jin, YU Xiaohui. Research progress of SIRT1 in the pathogenesis of diabetic cardiomyopathy [J]. Tianjin Medical Journal, 2024, 52(4): 443-448. |
[10] | CHEN Jing, WEI Yunjiao, LUO Chao, HUANG Lihua, CHEN Cheng, DUAN Shasha. The mechanism of Wumei pill on ulcerative colitis in mice based on Nrf2/ARE antioxidant stress pathway [J]. Tianjin Medical Journal, 2024, 52(3): 278-254. |
[11] | FU Xiujuan, LU Zuneng. Research progress of diabetes mellitus complicated with chronic inflammatory demyelinating polyneuropathy [J]. Tianjin Medical Journal, 2024, 52(2): 220-224. |
[12] | MIAO Chunbo, XU Yingchun, CHANG Yifang. Phlorizin allevistes oxidative stress and apoptosis of rat cardiac myocytes H9C2 induced by hypoxia/reoxygenation by down-regulating miR-125a-5p [J]. Tianjin Medical Journal, 2024, 52(12): 1233-1238. |
[13] | TU Jing, XIA Chenxi, LI Ting. Correlation analysis and risk factors of subclinical peripheral neuropathy and TIR in type 2 diabetes mellitus [J]. Tianjin Medical Journal, 2024, 52(11): 1188-1192. |
[14] | NIJAT Alim, MA Shifeng, XAMSIYA Alim, ZHANG Jing, ZHENG Rongxiu. Analysis of clinical characteristics and risk factors for diabetes mellitus complicated with urinary tract infection in children [J]. Tianjin Medical Journal, 2024, 52(10): 1051-1055. |
[15] | DUAN Yunfeng, XU Yongjie, YANG Tingting, HUANG Changyudong, ZHU Liying, LI Xing, PAN Wei. Construction and effect of a high glucose induced hippocampal neuron metabolic memory cell model in HT-22 mice [J]. Tianjin Medical Journal, 2024, 52(1): 44-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||