[1] |
王淑玲, 汤光宇, 刘帅帅, 等. 基于定量CT对炎症性肠病病人骨肌含量变化的初步研究[J]. 国际医学放射学杂志, 2023, 46(2):147-152,172.
|
|
WANG S L, TANG G Y, LIU S S, et al. A preliminary study on changes of musculoskeletal masses in patients with inflammatory bowel disease based on quantitative CT[J]. Int J Med Radiol, 2023, 46(2):147-152,172. doi:10.19300/j.2023.L19800.
|
[2] |
KHAN R, KUENZIG M E, BENCHIMOL E I. Epidemiology of pediatric inflammatory bowel disease[J]. Gastroenterol Clin North Am, 2023, 52(3):483-496. doi:10.1016/j.gtc.2023.05.001.
|
[3] |
杜鑫浩, 唐桢桢, 闫丽, 等. 肠道菌群代谢物与炎症性肠病关系的研究进展[J]. 中国微生态学杂志, 2023, 35(5):607-611.
|
|
DU X H, TANG Z Z, YAN L, et al. Relationship between intestinal flora metabolites and inflammatory bowel disease:research progress[J]. Chinese Journal of Microecology, 2023, 35(5):607-611. doi:10.13381/j.cnki.cjm.202305020.
|
[4] |
TIAN S, CHU Y, HU J, et al. Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc-xCT[J]. Gut, 2022, 71(12):2489-2501. doi:10.1136/gutjnl-2021-325137.
|
[5] |
MAUREL M, OBACZ J, AVRIL T, et al. Control of anterior GRadient 2(AGR2)dimerization links endoplasmic reticulum proteostasis to inflammation[J]. EMBO Mol Med, 2019, 11(6):e10120. doi:10.15252/emmm.201810120.
|
[6] |
BANNO Y, NOMURA M, HARA R, et al. Trimethylamine N-oxide and risk of inflammatory bowel disease:A Mendelian randomization study[J]. Medicine(Baltimore), 2023, 102(34):e34758. doi:10.1097/MD.0000000000034758.
|
[7] |
梁燕, 高静. 乳酸杆菌在急性心肌梗死防治中的潜在机制及应用进展[J]. 天津医药, 2024, 52(1):107-112.
|
|
LIANG Y, GAO J. Research progress on the potential mechanism and application of lactobacillus in the prevention and treatment of acute myocardial infarction[J]. Tianjin Med J, 2024, 52(1):107-112. doi:10.11958/20231153.
|
[8] |
中华医学会消化病学分会炎症性肠病学组. 炎症性肠病诊断与治疗的共识意见(2018年·北京)[J]. 中国实用内科杂志, 2018, 38(9):796-813.
|
|
Inflammatory Bowel Disease Group of Chinese Society of Gastroenterology of Chinese Medical Association. Chinese consensus on diagnosis and treatment of inflammatory bowel disease(Beijing,2018)[J]. Chinese Journal of Practical Internal Medicine, 2018, 38(9):796-813. doi:10.19538/j.nk2018090106.
|
[9] |
GIAMBRA V, PAGLIARI D, RIO P, et al. Gut microbiota,inflammatory bowel disease,and cancer:The role of guardians of innate immunity[J]. Cells, 2023, 12(22):2654. doi:10.3390/cells12222654.
|
[10] |
VESTERGAARD M V, ALLIN K H, ERIKSEN C, et al. Gut microbiota signatures in inflammatory bowel disease[J]. United European Gastroenterol J, 2024, 12(1):22-33. doi:10.1002/ueg2.12485.
|
[11] |
QIU P, ISHIMOTO T, FU L, et al. The gut microbiota in inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2022, 12:733992. doi:10.3389/fcimb.2022.733992.
|
[12] |
NEAMțI L, DRUGAN T C, DRUGAN C, et al. Assessing seasonal variations of biomarkers in inflammatory bowel disease[J]. Eur J Gastroenterol Hepatol, 2024, 36(8):993-999. doi:10.1097/MEG.0000000000002795.
|
[13] |
YAO Q, FAN L, ZHENG N, et al. 2'-fucosyllactose ameliorates inflammatory bowel disease by modulating gut microbiota and promoting MUC2 expression[J]. Front Nutr, 2022, 9:822020. doi:10.3389/fnut.2022.822020.
|
[14] |
CLOOTS E, GUILBERT P, PROVOST M, et al. Activation of goblet-cell stress sensor IRE1β is controlled by the mucin chaperone AGR2[J]. EMBO J, 2024, 43(5):695-718. doi:10.1038/s44318-023-00015-y.
|
[15] |
NEIDHARDT L, CLOOTS E, FRIEMEL N, et al. The IRE1β-mediated unfolded protein response is repressed by the chaperone AGR2 in mucin producing cells[J]. EMBO J, 2024, 43(5):719-753. doi:10.1038/s44318-023-00014-z.
|
[16] |
AL-SHAIBI A A, ABDEL-MOTAL U M, HUBRACK S Z, et al. Human AGR2 deficiency causes mucus barrier dysfunction and infantile inflammatory bowel disease[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(5):1809-1830. doi:10.1016/j.jcmgh.2021.07.001.
|
[17] |
YANG J J, SHU X O, HERRINGTON D M, et al. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis[J]. Am J Clin Nutr, 2021, 113(5):1145-1156. doi:10.1093/ajcn/nqaa430.
|
[18] |
KUL S, CALISKAN Z, GUVENC T S, et al. Gut microbiota-derived metabolite trimethylamine N-oxide and biomarkers of inflammation are linked to endothelial and coronary microvascular function in patients with inflammatory bowel disease[J]. Microvasc Res, 2023, 146:104458. doi:10.1016/j.mvr.2022.104458.
|
[19] |
BOONHAI S, BOOTDEE K, SAISORN W, et al. TMAO reductase,a biomarker for gut permeability defect induced inflammation, in mouse model of chronic kidney disease and dextran sulfate solution-induced mucositis[J]. Asian Pac J Allergy Immunol, 2023, 41(2):168-178. doi:10.12932/AP-100321-1084.
|
[20] |
SAFWAT EL-DEEB O, EL-ESAWY R O, AL-SHENAWY H A, et al. Modulating gut dysbiosis and mitochondrial dysfunction in oxazolone-induced ulcerative colitis:the restorative effects of β-glucan and/or celastrol[J]. Redox Rep, 2022, 27(1):60-69. doi:10.1080/13510002.2022.2046425.
|