[1] |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6):521-545.
|
|
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases burden in china:an updated summary of 2020[J]. Chin Circ J, 2021, 36(6):521-545. doi:10.3969/j.issn.1000-3614.2021.06.001.
|
[2] |
赵冬. 心血管疾病危险因素的研究:过去、现在和未来[J]. 中国循环杂志, 2021, 36(1):1-3.
|
|
ZHAO D. Research on cardiovascular disease risk factors:past,present and future[J]. Chin Circ J, 2021, 36(1):1-3. doi:10.3969/j.issn.1000-3614.2021.01.001.
|
[3] |
PELLEGRINI C, MARTELLI A, ANTONIOLI L, et al. NLRP3 inflammasome in cardiovascular diseases:Pathophysiological and pharmacological implications[J]. Med Res Rev, 2021, 41(4):1890-1926. doi:10.1002/med.21781.
|
[4] |
谭红梅. NLRP3炎症小体与心血管疾病[J]. 中山大学学报(医学科学版), 2017, 38(2):215-221.
|
|
TAN H M. Role of NLRP3 inflammasome in cardiovascular diseases[J]. J Sun Yat-sen Univ (Med Sci), 2017, 38(2):215-221. doi:10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2017.0035.
|
[5] |
THOSAR S S, BUTLER M P, SHEA S A. Role of the circadian system in cardiovascular disease[J]. J Clin Invest, 2018, 128(6):2157-2167. doi:10.1172/JCI80590.
|
[6] |
易娜, 袁李礼. BMAL1对H2O2诱导的H9c2心肌细胞损伤的影响及机制探讨[J]. 天津医药, 2021, 49(8):791-795.
|
|
YI N, YUAN L L. Effects and mechanism of BMAL1 on H2O2-induced H9C2 cardiomyocyte injury[J]. Tianjin Med J, 2021, 49(8):791-795. doi:10.11958/20210463.
|
[7] |
杨瑾, 徐志峰, 苏嘉, 等. 生物钟基因与心血管疾病的研究进展[J]. 中华心血管病杂志, 2020, 48(7):610-615.
|
|
YANG J, XU Z F, SU J, et al. Research progress on the circadian clock regulation in cardiovascular system and associationbetween circadian clock regulation and cardiovascular diseases[J]. Chin J Cardiol, 2020, 48(7):610-615. doi:10.3760/cma.j.cn112148-20190725-00430.
|
[8] |
易娜, 李贺, 游三丽, 等. 丹参酮ⅡA通过AK003290减轻H2O2诱导的原代小鼠心肌细胞焦亡[J]. 中国病理生理杂志, 2021, 37(6):1035-1041.
|
|
YI N, LI H, YOU S L, et al. Tanshinone IIA attenuates H2O2-induced primary mouse cardiomyocyte pyroptosis via AK003290[J]. Chin J Pathophysiol, 2021, 37(6):1035-1041. doi:10.11958/20210463.
|
[9] |
ABBATE A, TOLDO S, MARCHETTI C, et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease[J]. Circ Res, 2020, 126(9):1260-1280.
|
[10] |
PANDEY A, SHEN C, FENG S, et al. Cell biology of inflammasome activation[J]. Trends Cell Biol, 2021, 31(11):924-939. doi:10.1016/j.tcb.2021.06.010.
|
[11] |
ZHAO T, WU W, SUI L, et al. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries[J]. Bioact Mater, 2021, 7:47-72. doi:10.1016/j.bioactmat.2021.06.006.
|
[12] |
王佳慧, 梁欢, 方典, 等. 抑制线粒体活性氧自由基可减轻高糖诱导的心肌细胞焦亡和铁死亡[J]. 南方医科大学学报, 2021, 41(7):980-987.
|
|
WANG J H, LIANG H, FANG D, et al. Inhibition of mitochondrial reactive oxygen species reduces high glucose-induced pyroptosis and ferroptosis in H9C2 cardiac myocytes[J]. J South Med Univ, 2021, 41(7):980-987. doi:10.12122/j.issn.1673-4254.2021.07.03.
|
[13] |
WEI Z, NIE G, YANG F, et al. Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis attenuates cadmium-induced apoptosis in duck renal tubular epithelial cells[J]. Environ Pollut, 2020, 273:115919. doi:10.1016/j.envpol.2020.115919.
|
[14] |
HONG H, CHEUNG Y M, CAO X, et al. REV-ERBα agonist SR9009 suppresses IL-1β production in macrophages through BMAL1-dependent inhibition of inflammasome[J]. Biochem Pharmacol, 2021, 192:114701. doi:10.1016/j.bcp.2021.114701.
|
[15] |
SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7):363-383. doi:10.1038/s41580-020-0230-3.
|
[16] |
KASAI S, SHIMIZU S, TATARA Y, et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology[J]. Biomolecules, 2020, 10(2):320. doi:10.3390/biom10020320.
|
[17] |
陈芳, 邹联洪, 刘协红, 等. NRF2减轻阿霉素诱导的心肌H9c2细胞氧化应激和溶酶体功能障碍[J]. 中国病理生理杂志, 2019, 35(8):1359-1364.
|
|
CHEN F, ZOU L H, LIU X H, et al. NRF2 attenuates oxidative stress and lysosomal dysfunction in doxorubicin-induced H9C2 cells[J]. Chin J Pathophysiol, 2019, 35(8):1359-1364. doi:10.3969/j.issn.1000-4718.2019.08.003.
|
[18] |
CHHUNCHHA B, KUBO E, SINGH D P. Clock protein BMAL1 and Nrf2 cooperatively control aging or oxidative response and redox homeostasis by regulating rhythmic expression of prdx6[J]. Cells, 2020, 9(8):1861. doi:10.3390/cells9081861.
|
[19] |
LIU X H, XIAO W, JIANG Y, et al. BMAL1 regulates the redox rhythm of HSPB1,and homooxidized HSPB1 attenuates the oxidative stress injury of cardiomyocytes[J]. Oxid Med Cell Longev, 2021, 2021:5542815. doi:10.1155/2021/5542815.
|
[20] |
EARLY J O, MENON D, WYSE C A, et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2[J]. Proc Natl Acad Sci USA, 2018, 115(36):E8460-E8468. doi:10.1073/pnas.1800431115.
|