Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (4): 382-386.doi: 10.11958/20220873

• Experimental Research • Previous Articles     Next Articles

Effects of tetramethylpyrazine on analgesia and neuronal damage in migraine rats by regulating SIRT1/AMPK/PGC1α signaling pathway

HU Bin(), WANG Dabin, GUO Mao()   

  1. Department of Pain, Luzhou People's Hospital, Luzhou 646000, China
  • Received:2022-06-07 Revised:2022-09-01 Published:2023-04-15 Online:2023-04-20
  • Contact: GUO Mao E-mail:hclxoq@163.com;1044915644@qq.com

Abstract:

Objective To explore the effects of tetramethylpyrazine (TMP) on analgesia and neuronal injury protection in migraine rats by regulating silent mating type information regulation 2 homolog 1 (SIRT1)/AMP activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) signaling pathway. Methods The migraine rat model was established by nitroglycerin induction. After successful modeling, rats were randomly divided into the model (M) group, the TMP low dose (TMP-L) group (50 mg/kg), the TMP medium dose (TMP-M) group (100 mg/kg), the TMP high dose (TMP-M) group (200 mg/kg) and the TMP (200 mg/kg) + SIRT1 inhibitor (EX527, 5 mg/kg) group, 10 rats in each group. Another 10 rats were regarded as the normal control (NC) group. Rats were continuously gavaged for 2 weeks. Twenty-four hours after the end of the administration, the times of scratching head scratching and cage climbing of rats within 30 minutes were recorded in each group, and the behavioral score was carried out. The pain threshold for mechanical stimulation and thermal stimulation were determined. ELISA method was applied to measure serum levels of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1β (IL-1β), and 5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) in brain tissue. TUNEL staining was applied to observe neuronal apoptosis in brain tissue. Western blot assay was applied to measure the protein expression levels of SIRT1, AMPK, p-AMPK and PGC1α protein in brain tissue. Results Compared with the NC group, the behavioral score, serum levels of NO, IL-6 and IL-1β, and neuron apoptosis rate were significantly increased in the M group (P<0.05). The pain threshold of mechanical stimulation was significantly reduced, and the latency of thermal stimulation was significantly shortened (P<0.05). The levels of 5-HT, NE and DA in brain tissue, the ratio of p-AMPK/AMPK, and the protein expressions of SIRT1 and PGC1α were significantly decreased (P<0.05). Compared with the M group, the behavioral score, the serum levels of NO, IL-6 and IL-1β, and neuron apoptosis rate were significantly decreased in the TMP groups (P<0.05). The pain threshold of mechanical stimulation was significantly increased, and the latency of thermal stimulation was significantly prolonged (P<0.05). The levels of 5-HT, NE and DA in brain tissue, the ratio of p-AMPK/AMPK, and the protein expressions of SIRT1 and PGC1α were significantly increased (P<0.05). Compared with the TMP-H group, TMP+EX527 group showed that it significantly reversed the effect of TMP on migraine rats. Conclusion TMP may improve neuronal damage by regulating the expression of SIRT1/AMPK/PGC1α signaling pathway and exert analgesic effect on migraine rats.

Key words: migraine, analgesia, neurons, AMP-activated protein kinases, peroxisome proliferator-activated receptor gamma coactivator 1α, nitric oxide, interleukin-6, interleukin-1beta, tetramethylpyrazine, silent mating type information regulation 2 homolog 1

CLC Number: