Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (6): 653-657.doi: 10.11958/20230025
• Applied Research • Previous Articles Next Articles
WANG Tianchi(), WANG Zhong, NIU Ningning, TANG Ying
Received:
2023-01-05
Revised:
2023-02-22
Published:
2023-06-15
Online:
2023-06-20
Contact:
△E-mail:WANG Tianchi, WANG Zhong, NIU Ningning, TANG Ying. The value of ultrasonography in the differential diagnosis of parenchymal lesions of transplanted kidney[J]. Tianjin Medical Journal, 2023, 51(6): 653-657.
CLC Number:
组别 | n | 移植肾体积(cm3) | RI | |||||
---|---|---|---|---|---|---|---|---|
AR组 | 135 | 195.62±59.78 | 0.74±0.18 | |||||
ATN组 | 51 | 169.72±60.28 | 0.70±0.13 | |||||
t | 2.840** | 0.626 | ||||||
组别 | 能量图分级 | |||||||
0 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | ||||
AR组 | 19(14.1) | 40(29.6) | 47(34.8) | 24(17.8) | 5(3.7) | |||
ATN组 | 9(17.6) | 18(35.3) | 14(27.5) | 8(15.7) | 2(3.9) | |||
Z | 0.923 |
Tab.1 Comparison of conventional ultrasound parameter features between two groups
组别 | n | 移植肾体积(cm3) | RI | |||||
---|---|---|---|---|---|---|---|---|
AR组 | 135 | 195.62±59.78 | 0.74±0.18 | |||||
ATN组 | 51 | 169.72±60.28 | 0.70±0.13 | |||||
t | 2.840** | 0.626 | ||||||
组别 | 能量图分级 | |||||||
0 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | ||||
AR组 | 19(14.1) | 40(29.6) | 47(34.8) | 24(17.8) | 5(3.7) | |||
ATN组 | 9(17.6) | 18(35.3) | 14(27.5) | 8(15.7) | 2(3.9) | |||
Z | 0.923 |
医师诊断 | 病理结果(例) | 敏感度(%) | 特异度(%) | 准确度(%) | |
---|---|---|---|---|---|
AR | ATN | ||||
AR | 76 | 20 | 56.2 | 60.7 | 57.5 |
ATN | 59 | 31 |
Tab.2 The diagnostic value of physician group for organizational credit type
医师诊断 | 病理结果(例) | 敏感度(%) | 特异度(%) | 准确度(%) | |
---|---|---|---|---|---|
AR | ATN | ||||
AR | 76 | 20 | 56.2 | 60.7 | 57.5 |
ATN | 59 | 31 |
模型 | AUC(95%CI) | 准确度 (%) | 敏感度 (%) | 特异度 (%) |
---|---|---|---|---|
随机森林 | 0.931(0.779~0.997) | 85.80 | 97.60 | 80.00 |
支持向量机 | 0.762(0.604~0.897) | 81.90 | 95.10 | 55.00 |
逻辑回归 | 0.721(0.582~0.808) | 72.10 | 97.60 | 20.00 |
K近邻法 | 0.713(0.508~0.796) | 72.10 | 87.80 | 40.00 |
Tab.3 Analysis results of predictive effectiveness of each ultrasound radiomics model
模型 | AUC(95%CI) | 准确度 (%) | 敏感度 (%) | 特异度 (%) |
---|---|---|---|---|
随机森林 | 0.931(0.779~0.997) | 85.80 | 97.60 | 80.00 |
支持向量机 | 0.762(0.604~0.897) | 81.90 | 95.10 | 55.00 |
逻辑回归 | 0.721(0.582~0.808) | 72.10 | 97.60 | 20.00 |
K近邻法 | 0.713(0.508~0.796) | 72.10 | 87.80 | 40.00 |
[1] | 张伟杰. 边缘供肾移植的现状[J]. 中华器官移植杂志, 2021, 42(6):321-323. |
ZHANG W J. Current status of marginal donor kidney transplantation[J]. Chinese Journal of Organ Transplantation, 2021, 42(6):321-323. doi:10.3760/cma.j.cn421203-20210223-00066. | |
[2] | YANISHI M, KINOSHITA H, YOSHIDA T, et al. Comparison of live donor pre-transplant and recipient post-transplant renal volumes[J]. Clin Transplant, 2016, 30(5):613-618. doi:10.1111/ctr.12727. |
[3] | 王锁刚, 李伟, 翟琼瑶, 等. 移植肾脏病临床特点与病理类型的相关性分析[J]. 中国实验诊断学, 2021, 25(9):1280-1285. |
WANG S G, LI W, ZHAI Q Y, et al. The correlation analysis of clinical characteristics and pathological types of allograft nephropathy[J]. Chin J Lab Diagn, 2021, 25(9):1280-1285. doi:10.3969/j.issn.1007-4287.2021.09.005. | |
[4] | KOBAYASHI A, YAMAMOTO I, KATSUMATA H, et al. Change in glomerular volume and its clinicopathological impact after kidney transplantation[J]. Nephrology(Carlton), 2015, 20 Suppl 2:31-35. doi:10.1111/nep.12463. |
[5] | YAZDANI M, GHAEMIAN N, KHAFRI S, et al. Can the kidney volume help to differentiate the types of rejection before biopsy?[J]. Caspian J Intern Med, 2019, 10(1):11-15. doi:10.22088/cjim.10.1.11. |
[6] | 王天驰, 唐缨, 王众, 等. 超声监测移植肾功能及鉴别肾功能异常组织学类型[J]. 中国医学影像技术, 2021, 37(4):577-581. |
WANG T C, TANG Y, WANG Z, et al. Ultrasound in monitoring function and identifying pathological type of renal graft[J]. Chinese Journal of Medical Imaging Technology, 2021, 37(4):577-581. doi:10.13929/j.issn.1003-3289.2021.04.023. | |
[7] | LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446. doi:10.1016/j.ejca.2011.11.036. |
[8] | BAGHERI S M, TAJALLI F, SHAHROKH H, et al. Sonographic indices in patients with severe acute tubular necrosis during early post-kidney transplantation Period[J]. Int J Organ Transplant Med, 2019, 10(2):74-83. |
[9] | WU Y, JIANG J H, CHEN L, et al. Use of radiomic features and support vector machine to distinguish Parkinson's disease cases from normal controls[J]. Ann Transl Med, 2019, 7(23):773. doi:10.21037/atm.2019.11.26. |
[10] | 谷东风, 赵云峰, 苗书斋, 等. 亲属活体供肾肾体积与受体体表面积比值对早期移植肾功能的影响[J]. 器官移植, 2018, 9(3):211-214. |
GU D F, ZHAO Y F, MIAO S Z, et al. Effect of the ration of living related donor renal volume to recipient body surface area on early function of transplation kidney[J]. Organ Transplantation, 2018, 9(3):211-214. doi:10.3969/j.issn.1674-7445.2018.03.008. | |
[11] | 梁红敏, 陆永萍, 陈敏, 等. 超微血流与彩色多普勒半定量分析在慢性肾脏病肾血流灌注中的应用[J]. 昆明医科大学学报, 2021, 42(2):38-42. |
LIANG H M, LU Y P, CHEN M, et al. Study on renal perfusion in chronic kidney disease by semi-quantitative analysis of superb micro-vascular imaging and color doppler[J]. Journal of Kunming Medical University, 2021, 42(2):38-42. doi:10.12259/j.issn.2095-610X.S20210212. | |
[12] | NANKIVELL B J, FENTON-LEE C A, KUYPERS D R, et al. Effect of histological damage on long-term kidney transplant outcome[J]. Transplantation, 2001, 71(4):515-523. doi:10.1097/00007890-200102270-00006. |
[13] | VINSON A, SKINNER T, KIBERD B, et al. The differential impact of size mismatch in live versus deceased donor kidney transplant[J]. Clin Transplant, 2021, 35(6):e14310. doi:10.1111/ctr.14310. |
[14] | BAGHERI S M, TAJALLI F, SHAHROKH H, et al. Sonographic indices in patients with severe acute tubular necrosis during early post-kidney transplantation period[J]. Int J Organ Transplant Med, 2019, 10(2):74-83. |
[15] | 巩高, 黄文华, 曹石, 等. 人工智能在医学的应用研究进展[J]. 中国医学物理学杂志, 2021, 38(8):1044-1047. |
GONG G, HUANG W H, CAO S, et al. Advances in application of artificial intelligence in medicine[J]. Chinese Journal of Medical Physics, 2021, 38(8):1044-1047. doi:10.3969/j.issn.1005-202X.2021.08.024. | |
[16] | 黄云霞, 周瑾, 刘桐桐, 等. 超声影像组学与传统影像模式对甲状腺乳头状癌颈部中央区淋巴结转移的诊断价值比较[J]. 中华超声影像学杂志, 2019, 28(10):882-887. |
HUANG Y X, ZHOU J, LIU T T, et al. Comparison of ultrasound radiomics with conventional imaging models:diagnosis of central cervical lymph node metastasis in papillary thyroid carcinoma[J]. Chinese Journal of Ultrasonography, 2019, 28(10):882-887. doi:10.3760/cma.j.issn.1004-4477.2019.10.011. | |
[17] | LI X, ZHANG S, ZHANG Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images:a retrospective,multicohort,diagnostic study[J]. Lancet Oncol, 2019, 20(2):193-201. doi:10.1016/S1470-2045(18)30762-9. |
[18] | MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to Radiomics[J]. J Nucl Med, 2020, 61(4):488-495. doi:10.2967/jnumed.118.222893. |
[19] | 张旭, 黄品同. 基于灰阶超声影像组学的颈部淋巴瘤预测模型研究[J]. 中华超声影像学杂志, 2021, 30(6):506-512. |
ZHANG X, HUANG P T. Prediction model of neck lymphoma based on gray-scale ultrasonography radiomics[J]. Chinese Journal of Ultrasonography, 2021, 30(6):506-512. doi:10.3760/cma.j.cn131148-20201222-00960. | |
[20] | ZHANG Y, ZHANG B, LIANG F, et al. Radiomics features on non-contrast-enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types[J]. Eur Radiol, 2019, 29(4):2157-2165. doi:10.1007/s00330-018-5747-x. |
[21] | 龚健雅, 宦麟茜, 郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报, 2022, 51(6):873-884. |
GONG J Y, HUAN L X, ZHENG X W. Deep learning interpretability analysis methods in image interpretation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):873-884. doi:10.11947/j.AGCS.2022.20220106. | |
[22] | PARMAR C, GROSSMANN P, BUSSINK J, et al. Machine learning methods for quantitative radiomic biomarkers[J]. Sci Rep, 2015, 5:13087. doi:10.1038/srep13087. |
[23] | 胡艳, 刘洋, 郑伊能, 等. 基于MRI常规T2WI的不同影像组学模型在卵巢上皮性肿瘤术前三分类中的应用[J]. 磁共振成像, 2021, 12(12):34-38,54. |
HU Y, LIU Y, ZHENG Y N, et al. Application of different radiomics models based on MRI conventional T2WI in preoperative tri-classification of ovarian epithelial tumors[J]. Chin J Magn Reson Imaging, 2021, 12(12):34-38,54. doi:10.12015/issn.1674-8034.2021.12.007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||