
Tianjin Medical Journal ›› 2025, Vol. 53 ›› Issue (9): 946-951.doi: 10.11958/20250987
• Clinical Research • Previous Articles Next Articles
CHEN Miaomiao(
), ZHANG Yazheng, ZHAO Fang, YANG Liheng, JIAO Lina, ZHAO Xiaoyun△(
)
Received:2025-03-11
Revised:2025-07-02
Published:2025-09-15
Online:2025-09-16
Contact:
△E-mail: CHEN Miaomiao, ZHANG Yazheng, ZHAO Fang, YANG Liheng, JIAO Lina, ZHAO Xiaoyun. Multi-omics analysis of the causal relationship and mediation mechanisms between obstructive sleep apnea and atrial fibrillation[J]. Tianjin Medical Journal, 2025, 53(9): 946-951.
CLC Number:
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| OSA | AF | MR-Egger | 41 | 0.479 | 1.091(0.859~1.387) |
| OSA | AF | 加权中位数法 | 41 | 0.016 | 1.120(1.022~1.228) |
| OSA | AF | IVW | 41 | 0.027 | 1.078(1.009~1.152) |
| OSA | AF | 简单模式法 | 41 | 0.129 | 1.202(0.953~1.516) |
| OSA | AF | 加权法 | 41 | 0.011 | 1.246(1.061~1.464) |
Tab.1 Verification of the causal relationship between OSA and AF based on multiple analytical methods
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| OSA | AF | MR-Egger | 41 | 0.479 | 1.091(0.859~1.387) |
| OSA | AF | 加权中位数法 | 41 | 0.016 | 1.120(1.022~1.228) |
| OSA | AF | IVW | 41 | 0.027 | 1.078(1.009~1.152) |
| OSA | AF | 简单模式法 | 41 | 0.129 | 1.202(0.953~1.516) |
| OSA | AF | 加权法 | 41 | 0.011 | 1.246(1.061~1.464) |
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| AF | OSA | MR-Egger | 87 | 0.343 | 1.037(0.962~1.118) |
| AF | OSA | 加权中位数法 | 87 | 0.034 | 1.045(1.004~1.089) |
| AF | OSA | IVW | 87 | 0.093 | 1.027(0.996~1.058) |
| AF | OSA | 简单模式法 | 87 | 0.723 | 0.983(0.896~1.079) |
| AF | OSA | 加权法 | 87 | 0.261 | 1.033(0.976~1.093) |
Tab.2 The reverse causal relationship between AF and OSA
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| AF | OSA | MR-Egger | 87 | 0.343 | 1.037(0.962~1.118) |
| AF | OSA | 加权中位数法 | 87 | 0.034 | 1.045(1.004~1.089) |
| AF | OSA | IVW | 87 | 0.093 | 1.027(0.996~1.058) |
| AF | OSA | 简单模式法 | 87 | 0.723 | 0.983(0.896~1.079) |
| AF | OSA | 加权法 | 87 | 0.261 | 1.033(0.976~1.093) |
| 暴露因素 | 结局 | 方法 | SNPs/ 个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 成纤维细胞 生长因子5 | AF | IVW | 28 | <0.001 | 1.050(1.021~1.081) |
| 白细胞介素(IL)-18 受体1 | AF | IVW | 33 | 0.006 | 1.048(1.013~1.083) |
| IL-33 | AF | IVW | 15 | 0.019 | 1.097(1.016~1.185) |
| 神经营养因子3 | AF | IVW | 23 | 0.033 | 1.065(1.005~1.129) |
| 血管内皮生长因子A | AF | IVW | 25 | 0.012 | 1.062(1.013~1.113) |
Tab.3 Inflammatory factors associated with AF onset
| 暴露因素 | 结局 | 方法 | SNPs/ 个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 成纤维细胞 生长因子5 | AF | IVW | 28 | <0.001 | 1.050(1.021~1.081) |
| 白细胞介素(IL)-18 受体1 | AF | IVW | 33 | 0.006 | 1.048(1.013~1.083) |
| IL-33 | AF | IVW | 15 | 0.019 | 1.097(1.016~1.185) |
| 神经营养因子3 | AF | IVW | 23 | 0.033 | 1.065(1.005~1.129) |
| 血管内皮生长因子A | AF | IVW | 25 | 0.012 | 1.062(1.013~1.113) |
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 记忆B细胞计数 | AF | IVW | 14 | 0.023 | 1.027(1.004~1.051) |
| CD24+CD27+细胞计数 | AF | IVW | 22 | 0.027 | 1.024(1.003~1.047) |
| IgD-CD38±细胞计数 | AF | IVW | 15 | <0.001 | 1.070(1.036~1.105) |
| CD25高表达CD45RA+ CD4非调节性T细胞 (占T细胞的百分比) | AF | IVW | 19 | 0.031 | 1.013(1.001~1.024) |
| CD33弱阳性HLA-DR+ CD11b-(占CD33± HLA-DR+比例) | AF | IVW | 20 | 0.008 | 1.015(1.004~1.026) |
| CD4-CD8- NKT细胞(占T细胞的比例) | AF | IVW | 25 | 0.012 | 1.031(1.007~1.056) |
| IgD+CD38-初始B细胞上的CD19 | AF | IVW | 17 | 0.036 | 1.017(1.001~1.034) |
| IgD+CD24+细胞上的CD20 | AF | IVW | 21 | 0.007 | 1.033(1.009~1.058) |
| CD24+ CD27+细胞上的CD27 | AF | IVW | 24 | 0.003 | 1.027(1.009~1.044) |
| IgD-CD38-细胞的CD27 | AF | IVW | 25 | 0.002 | 1.028(1.010~1.046) |
| IgD-CD38++细胞上的CD27 | AF | IVW | 13 | 0.026 | 1.060(1.007~1.116) |
| IgD-CD38±细胞上的CD27 | AF | IVW | 27 | 0.001 | 1.031(1.012~1.049) |
| 未转换记忆细胞表面的CD27 | AF | IVW | 27 | 0.023 | 1.026(1.003~1.048) |
| 转换记忆细胞表面的CD27 | AF | IVW | 25 | <0.001 | 1.030(1.013~1.048) |
| CD8++细胞表面的疱疹病毒侵入介质表达 | AF | IVW | 14 | 0.021 | 1.025(1.004~1.046) |
Tab.4 Immune cells associated with AF risk (Top 15 of 19)
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 记忆B细胞计数 | AF | IVW | 14 | 0.023 | 1.027(1.004~1.051) |
| CD24+CD27+细胞计数 | AF | IVW | 22 | 0.027 | 1.024(1.003~1.047) |
| IgD-CD38±细胞计数 | AF | IVW | 15 | <0.001 | 1.070(1.036~1.105) |
| CD25高表达CD45RA+ CD4非调节性T细胞 (占T细胞的百分比) | AF | IVW | 19 | 0.031 | 1.013(1.001~1.024) |
| CD33弱阳性HLA-DR+ CD11b-(占CD33± HLA-DR+比例) | AF | IVW | 20 | 0.008 | 1.015(1.004~1.026) |
| CD4-CD8- NKT细胞(占T细胞的比例) | AF | IVW | 25 | 0.012 | 1.031(1.007~1.056) |
| IgD+CD38-初始B细胞上的CD19 | AF | IVW | 17 | 0.036 | 1.017(1.001~1.034) |
| IgD+CD24+细胞上的CD20 | AF | IVW | 21 | 0.007 | 1.033(1.009~1.058) |
| CD24+ CD27+细胞上的CD27 | AF | IVW | 24 | 0.003 | 1.027(1.009~1.044) |
| IgD-CD38-细胞的CD27 | AF | IVW | 25 | 0.002 | 1.028(1.010~1.046) |
| IgD-CD38++细胞上的CD27 | AF | IVW | 13 | 0.026 | 1.060(1.007~1.116) |
| IgD-CD38±细胞上的CD27 | AF | IVW | 27 | 0.001 | 1.031(1.012~1.049) |
| 未转换记忆细胞表面的CD27 | AF | IVW | 27 | 0.023 | 1.026(1.003~1.048) |
| 转换记忆细胞表面的CD27 | AF | IVW | 25 | <0.001 | 1.030(1.013~1.048) |
| CD8++细胞表面的疱疹病毒侵入介质表达 | AF | IVW | 14 | 0.021 | 1.025(1.004~1.046) |
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 二甲基精氨酸 | AF | IVW | 16 | <0.001 | 1.107(1.054~1.161) |
| 鞘磷脂(d18:1/24:1,d18:2/24:0) | AF | IVW | 16 | 0.011 | 1.075(1.017~1.137) |
| 二十一碳五烯酸(21:5n3) | AF | IVW | 15 | 0.026 | 1.056(1.007~1.108) |
| (2或3)-癸烯酸(10:1n7或n8) | AF | IVW | 19 | 0.008 | 1.058(1.015~1.103) |
| 氧化型半胱氨酰甘氨酸 | AF | IVW | 20 | 0.033 | 1.032(1.003~1.062) |
| X-12410 | AF | IVW | 25 | 0.008 | 1.050(1.013~1.089) |
| X-12714 | AF | IVW | 17 | 0.028 | 1.058(1.006~1.112) |
| X-13007 | AF | IVW | 21 | 0.018 | 1.057(1.010~1.107) |
| X-21285 | AF | IVW | 24 | 0.032 | 1.039(1.003~1.075) |
| X-25172 | AF | IVW | 25 | 0.048 | 1.045(1.000~1.092) |
| X-19141 | AF | IVW | 13 | 0.047 | 1.021(1.000~1.042) |
| 3-磷酸甘油酸与甘油酸比值 | AF | IVW | 27 | 0.021 | 1.069(1.010~1.130) |
| 苯丙氨酸与磷酸盐比值 | AF | IVW | 27 | 0.017 | 1.063(1.011~1.117) |
| N-棕榈酰鞘氨醇(d18:1-16:0)与N-棕榈酰鞘氨烷(d18:0-16:0)比值 | AF | IVW | 25 | 0.036 | 1.049(1.003~1.096) |
| 咖啡因与亚油酸(18:2n6)比值 | AF | IVW | 14 | 0.016 | 1.070(1.013~1.131) |
Tab.5 Blood metabolites associated with the risk of AF onset
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 二甲基精氨酸 | AF | IVW | 16 | <0.001 | 1.107(1.054~1.161) |
| 鞘磷脂(d18:1/24:1,d18:2/24:0) | AF | IVW | 16 | 0.011 | 1.075(1.017~1.137) |
| 二十一碳五烯酸(21:5n3) | AF | IVW | 15 | 0.026 | 1.056(1.007~1.108) |
| (2或3)-癸烯酸(10:1n7或n8) | AF | IVW | 19 | 0.008 | 1.058(1.015~1.103) |
| 氧化型半胱氨酰甘氨酸 | AF | IVW | 20 | 0.033 | 1.032(1.003~1.062) |
| X-12410 | AF | IVW | 25 | 0.008 | 1.050(1.013~1.089) |
| X-12714 | AF | IVW | 17 | 0.028 | 1.058(1.006~1.112) |
| X-13007 | AF | IVW | 21 | 0.018 | 1.057(1.010~1.107) |
| X-21285 | AF | IVW | 24 | 0.032 | 1.039(1.003~1.075) |
| X-25172 | AF | IVW | 25 | 0.048 | 1.045(1.000~1.092) |
| X-19141 | AF | IVW | 13 | 0.047 | 1.021(1.000~1.042) |
| 3-磷酸甘油酸与甘油酸比值 | AF | IVW | 27 | 0.021 | 1.069(1.010~1.130) |
| 苯丙氨酸与磷酸盐比值 | AF | IVW | 27 | 0.017 | 1.063(1.011~1.117) |
| N-棕榈酰鞘氨醇(d18:1-16:0)与N-棕榈酰鞘氨烷(d18:0-16:0)比值 | AF | IVW | 25 | 0.036 | 1.049(1.003~1.096) |
| 咖啡因与亚油酸(18:2n6)比值 | AF | IVW | 14 | 0.016 | 1.070(1.013~1.131) |
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 再生基因4 | AF | IVW | 38 | 0.035 | 1.060(1.004~1.119) |
| 肾小管间质抗原1 | AF | IVW | 33 | 0.039 | 1.057(1.003~1.114) |
| 尿卟啉原Ⅲ合酶 | AF | IVW | 19 | 0.006 | 1.088(1.025~1.155) |
| 核输出因子1 | AF | IVW | 14 | 0.002 | 1.236(1.079~1.417) |
| Rho GAP蛋白30 | AF | IVW | 20 | <0.001 | 1.151(1.060~1.250) |
| 二酰基甘油激酶β | AF | IVW | 12 | 0.039 | 1.101(1.005~1.206) |
| HECT和RLD结构域包含蛋白5 | AF | IVW | 24 | <0.001 | 1.094(1.044~1.146) |
| 丝氨酸蛋白酶抑制剂A10(Z抑制剂) | AF | IVW | 29 | 0.022 | 1.028(1.004~1.053) |
| 热休克蛋白70家族成员9 | AF | IVW | 23 | 0.036 | 1.124(1.008~1.253) |
| 抗SSB/La自身抗原 | AF | IVW | 14 | 0.035 | 1.140(1.009~1.288) |
| CREB结合蛋白 | AF | IVW | 24 | 0.023 | 1.083(1.011~1.160) |
| Cullin相关NEDD8解离蛋白1 | AF | IVW | 20 | 0.042 | 1.108(1.004~1.223) |
| 脑源性神经营养因子 | AF | IVW | 31 | 0.024 | 1.124(1.008~1.253) |
| 10号染色体开放阅读框 54 | AF | IVW | 25 | 0.007 | 1.057(1.015~1.101) |
| 聚集蛋白 | AF | IVW | 35 | 0.003 | 1.070(1.023~1.119) |
Tab.6 Circulating proteins associated with the risk of AF (Top 15 of 67)
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| 再生基因4 | AF | IVW | 38 | 0.035 | 1.060(1.004~1.119) |
| 肾小管间质抗原1 | AF | IVW | 33 | 0.039 | 1.057(1.003~1.114) |
| 尿卟啉原Ⅲ合酶 | AF | IVW | 19 | 0.006 | 1.088(1.025~1.155) |
| 核输出因子1 | AF | IVW | 14 | 0.002 | 1.236(1.079~1.417) |
| Rho GAP蛋白30 | AF | IVW | 20 | <0.001 | 1.151(1.060~1.250) |
| 二酰基甘油激酶β | AF | IVW | 12 | 0.039 | 1.101(1.005~1.206) |
| HECT和RLD结构域包含蛋白5 | AF | IVW | 24 | <0.001 | 1.094(1.044~1.146) |
| 丝氨酸蛋白酶抑制剂A10(Z抑制剂) | AF | IVW | 29 | 0.022 | 1.028(1.004~1.053) |
| 热休克蛋白70家族成员9 | AF | IVW | 23 | 0.036 | 1.124(1.008~1.253) |
| 抗SSB/La自身抗原 | AF | IVW | 14 | 0.035 | 1.140(1.009~1.288) |
| CREB结合蛋白 | AF | IVW | 24 | 0.023 | 1.083(1.011~1.160) |
| Cullin相关NEDD8解离蛋白1 | AF | IVW | 20 | 0.042 | 1.108(1.004~1.223) |
| 脑源性神经营养因子 | AF | IVW | 31 | 0.024 | 1.124(1.008~1.253) |
| 10号染色体开放阅读框 54 | AF | IVW | 25 | 0.007 | 1.057(1.015~1.101) |
| 聚集蛋白 | AF | IVW | 35 | 0.003 | 1.070(1.023~1.119) |
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| OSA | 神经营养因子3 | IVW | 50 | 0.038 | 1.094(1.005~1.191) |
| OSA | X-21285 | IVW | 49 | 0.034 | 1.162(1.011~1.334) |
| OSA | Rho GAP蛋白30 | IVW | 49 | 0.032 | 1.076(1.007~1.150) |
| OSA | 二酰基甘油激酶β | IVW | 49 | 0.038 | 1.064(1.004~1.127) |
| OSA | HECT和RLD结构域包含蛋白5 | IVW | 49 | 0.023 | 1.072(1.010~1.139) |
| OSA | 抗SSB/La自身抗原 | IVW | 49 | 0.027 | 1.073(1.008~1.142) |
| OSA | CREB结合蛋白 | IVW | 49 | 0.011 | 1.091(1.020~1.166) |
| OSA | 聚集蛋白 | IVW | 49 | 0.003 | 1.097(1.031~1.166) |
| OSA | 胺氧化酶铜离子结合蛋白1 | IVW | 49 | 0.027 | 1.067(1.007~1.129) |
| OSA | Toll样受体5 | IVW | 49 | 0.040 | 1.063(1.003~1.127) |
| OSA | VPS10p结构域受体2 | IVW | 49 | 0.039 | 1.061(1.003~1.123) |
| OSA | 脂肪酸结合蛋白3 | IVW | 49 | 0.023 | 1.122(1.016~1.238) |
| OSA | 碳水化合物硫酸转移酶12 | IVW | 49 | 0.002 | 1.102(1.038~1.170) |
| OSA | 瘦素 | IVW | 49 | 0.015 | 1.136(1.025~1.259) |
Tab.7 One inflammatory factor, 1 blood metabolite and 12 circulating proteins associated with OSA as a risk factor
| 暴露因素 | 结局 | 方法 | SNPs/个 | P | OR(95%CI) |
|---|---|---|---|---|---|
| OSA | 神经营养因子3 | IVW | 50 | 0.038 | 1.094(1.005~1.191) |
| OSA | X-21285 | IVW | 49 | 0.034 | 1.162(1.011~1.334) |
| OSA | Rho GAP蛋白30 | IVW | 49 | 0.032 | 1.076(1.007~1.150) |
| OSA | 二酰基甘油激酶β | IVW | 49 | 0.038 | 1.064(1.004~1.127) |
| OSA | HECT和RLD结构域包含蛋白5 | IVW | 49 | 0.023 | 1.072(1.010~1.139) |
| OSA | 抗SSB/La自身抗原 | IVW | 49 | 0.027 | 1.073(1.008~1.142) |
| OSA | CREB结合蛋白 | IVW | 49 | 0.011 | 1.091(1.020~1.166) |
| OSA | 聚集蛋白 | IVW | 49 | 0.003 | 1.097(1.031~1.166) |
| OSA | 胺氧化酶铜离子结合蛋白1 | IVW | 49 | 0.027 | 1.067(1.007~1.129) |
| OSA | Toll样受体5 | IVW | 49 | 0.040 | 1.063(1.003~1.127) |
| OSA | VPS10p结构域受体2 | IVW | 49 | 0.039 | 1.061(1.003~1.123) |
| OSA | 脂肪酸结合蛋白3 | IVW | 49 | 0.023 | 1.122(1.016~1.238) |
| OSA | 碳水化合物硫酸转移酶12 | IVW | 49 | 0.002 | 1.102(1.038~1.170) |
| OSA | 瘦素 | IVW | 49 | 0.015 | 1.136(1.025~1.259) |
| [1] | YEGHIAZARIANS Y, JNEID H, TIETJENS J R, et al. Obstructive sleep apnea and cardiovascular disease:a scientific statement from the american heart association[J]. Circulation, 2021, 144(3):e56-e67. doi:10.1161/CIR.0000000000000988. |
| [2] | SHAMLOO A S, DAGRES N, ARYA A, et al. Atrial fibrillation:a review of modifiable risk factors and preventive strategies[J]. Rom J Intern Med, 2019, 57(2):99-109. doi:10.2478/rjim-2018-0045. |
| [3] | ZHAO J, XU W, YUN F, et al. Chronic obstructive sleep apnea causes atrial remodeling in canines:mechanisms and implications[J]. Basic Res Cardiol, 2014, 109(5):427. doi:10.1007/s00395-014-0427-8. |
| [4] | CHEN W, CAI X, YAN H, et al. Causal effect of obstructive sleep apnea on atrial fibrillation:a mendelian randomization study[J]. J Am Heart Assoc, 2021, 10(23):e022560. doi:10.1161/JAHA.121.022560. |
| [5] | RIAZ S, BHATTI H, SAMPAT P J, et al. The converging pathologies of obstructive sleep apnea and atrial arrhythmias[J]. Cureus, 2020, 12(7):e9388. doi:10.7759/cureus.9388. |
| [6] | BANDI P S, PANIGRAHY P K, HAJEEBU S, et al. Pathophysiological mechanisms to review association of atrial fibrillation in heart failure with obstructive sleep apnea[J]. Cureus, 2021, 13(7):e16086. doi:10.7759/cureus.16086. |
| [7] | 沈冲, 欧阳若芸, 刘婷, 等. 阻塞性睡眠呼吸暂停患者免疫功能改变的研究进展[J]. 中华结核和呼吸杂志, 2021, 44(6):578-582. |
| SHEN C, OUYANG R Y, LIU T, et al. Research progress on immune function change in patients with obstructive sleep apnea[J]. Chin J Tubere Respir Dis, 2021, 44(6):578-582. doi:10.3760/cma.j.cn112147-20200809-00883. | |
| [8] | ZHANG X, WANG S, XU H, et al. Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea:a comprehensive review[J]. Eur Respir Rev, 2021, 30(160):200220. doi:10.1183/16000617.0220-2020. |
| [9] | ZHAO J H, STACEY D, ERIKSSON N, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets[J]. Nat Immunol, 2023, 24(9):1540-1551. doi:10.1038/s41590-023-01588-w. |
| [10] | ORRÙ V, STERI M, SIDORE C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020, 52(10):1036-1045. doi:10.1038/s41588-020-0684-4. |
| [11] | CHEN Y, LU T, PETTERSSON-KYMMER U, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases[J]. Nat Genet, 2023, 55(1):44-53. doi:10.1038/s41588-022-01270-1. |
| [12] | ELDJARN G H, FERKINGSTAD E, LUND S H, et al. Large-scale plasma proteomics comparisons through genetics and disease associations[J]. Nature, 2023, 622(7982):348-358. doi:10.1038/s41586-023-06563-x. |
| [13] | ZHANG D, MA Y, XU J, et al. Association between obstructive sleep apnea(OSA)and atrial fibrillation(AF):a dose-response meta-analysis[J]. Medicine(Baltimore), 2022, 101(30):e29443. doi:10.1097/MD.0000000000029443. |
| [14] | SALEEB-MOUSA J, NATHANAEL D, CONEY A M, et al. Mechanisms of atrial fibrillation in obstructive sleep apnoea[J]. Cells, 2023, 12(12):1661. doi:10.3390/cells12121661. |
| [15] | LIEW R, KHAIRUNNISA K, GU Y, et al. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate[J]. Circ J, 2013, 77(5):1171-1179. doi:10.1253/circj.cj-12-1155. |
| [16] | MONNERAT G, ALARCÓN M L, VASCONCELLOS L R, et al. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice[J]. Nat Commun, 2016, 7:13344. doi:10.1038/ncomms13344. |
| [17] | VAN WAGONER D R, CHUNG M K. Inflammation,inflammasome activation,and atrial fibrillation[J]. Circulation, 2018, 138(20):2243-2246. doi:10.1161/CIRCULATIONAHA.118.036143. |
| [18] | YAO C, VELEVA T, SCOTT L Jr, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation[J]. Circulation, 2018, 138(20):2227-2242. doi:10.1161/CIRCULATIONAHA.118.035202. |
| [19] | LAVALLE S, MASIELLO E, IANNELLA G, et al. Unraveling the complexities of oxidative stress and inflammation biomarkers in obstructive sleep apnea syndrome:a comprehensive review[J]. Life (Basel), 2024, 14(4):425. doi:10.3390/life14040425. |
| [20] | 卢冬梅. 下气道中炎症因子、肺表面活性蛋白及菌群与阻塞性睡眠呼吸暂停关系的研究[D]. 乌鲁木齐: 新疆医科大学, 2016:26. |
| LU D M. Correlation studies between the levels of inflammatory factors,pulmonary surfactant proteinsand the microbial flora in the lower airway and obstructive sleep apnea[D]. Urumqi: Xinjiang Medical University, 2016:26. | |
| [21] | GABRYELSKA A, TURKIEWICZ S, DITMER M, et al. Neurotrophins in the neuropathophysiology,course, and complications of obstructive sleep apnea-a narrative review[J]. Int J Mol Sci, 2023, 24(3):1808. doi:10.3390/ijms24031808. |
| [22] | LITVIŇUKOVÁ M, TALAVERA-LÓPEZ C, MAATZ H, et al. Cells of the adult human heart[J]. Nature, 2020, 588(7838):466-472. doi:10.1038/s41586-020-2797-4. |
| [23] | 伍瑜, 佘笠, 黄东海. 阻塞性睡眠呼吸暂停低通气综合征患者相关免疫功能变化的研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2022, 57(5):649-655. |
| WU Y, SHE L, HUANG D H. A review about changes of immune function in patients with obstructive sleep apnea hypopnea syndrome[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2022, 57(5):649-655. doi:10.3760/cma.j.cn115330-20211206-00779. | |
| [24] | COOKE J P. ADMA:its role in vascular disease[J]. Vasc Med, 2005, 10 Suppl 1:S11-17. doi:10.1177/1358836X0501000103. |
| [25] | HANNUN Y A, OBEID L M. Sphingolipids and their metabolism in physiology and disease[J]. Nat Rev Mol Cell Biol, 2018, 19(3):175-191. doi:10.1038/nrm.2017.107. |
| [26] | JIANG X C, PAULTRE F, PEARSON T A, et al. Plasma sphingomyelin level as a risk factor for coronary artery disease[J]. Arterioscler Thromb Vasc Biol, 2000, 20(12):2614-2618. doi:10.1161/01.atv.20.12.2614. |
| [27] | HAVULINNA A S, SYSI-AHO M, HILVO M, et al. Circulating ceramides predict cardiovascular outcomes in the population-based finrisk 2002 cohort[J]. Arterioscler Thromb Vasc Biol, 2016, 36(12):2424-2430. doi:10.1161/ATVBAHA.116.307497. |
| [28] | KALKHOVEN E. CBP and p300:HATs for different occasions[J]. Biochem Pharmacol, 2004, 68(6):1145-1155. doi:10.1016/j.bcp.2004.03.045. |
| [29] | TCHERKEZIAN J, LAMARCHE-VANE N. Current knowledge of the large RhoGAP family of proteins[J]. Biol Cell, 2007, 99(2):67-86. doi:10.1042/BC20060086. |
| [1] | LI Wenxiu, ZHU Zhenyu, CHAI Hui, ZHENG Xiaoxuan, LU Jing, LI Runqin. Advances in the mechanism of left auricular thrombosis in patients with atrial fibrillation [J]. Tianjin Medical Journal, 2025, 53(9): 1005-1008. |
| [2] | LIU Zhipeng, ZHANG Xiaowen, LI Peixian, CHEN Yihao, ZHOU Dan, YANG Shengli, CHEN Zhuxing, LIU Jia. The regenerative effect of young plasma microenvironment on aging ovaries of aged mice [J]. Tianjin Medical Journal, 2025, 53(8): 808-813. |
| [3] | FENG Xuewu, LI Jingjuan, KUAI Wanjun. Compliance analysis of new oral anticoagulants in elderly patients with nonvalvular atrial fibrillation [J]. Tianjin Medical Journal, 2025, 53(8): 884-888. |
| [4] | SUN Lusheng, ZHANG Lifang, GAO Junjie, TANG Xiuying. Relationship between CT quantitative left heart structure parameters and recurrence of hypertrophic cardiomyopathy complicated with atrial fibrillation after radiofrequency ablation [J]. Tianjin Medical Journal, 2025, 53(5): 533-536. |
| [5] | GAO Pan, XIE Bingxin, ZHOU Zandong, LIU Tong. Promoting effect of circulating FGF23 on atrial fibrosis in chronic kidney disease [J]. Tianjin Medical Journal, 2024, 52(9): 917-923. |
| [6] | LIU Qingqing, LI Yiqiang, SHI Yushi, LU Haisong, CHENG Weimin. Research progress on the mechanism of the TGF-β signaling pathway in myelodysplastic syndrome [J]. Tianjin Medical Journal, 2024, 52(7): 781-784. |
| [7] | XIA Yuwei, QIAO Yunyang, LIU Xuewei, SHI Huimin, QU Gaoting, ZHANG Aiqing, GAN Weihua. Effect of tRF-1:30 on the expression of inflammatory factors in renal tubular epithelial cells induced by high glucose [J]. Tianjin Medical Journal, 2024, 52(6): 561-566. |
| [8] | ZHANG Minglong, FANG Yuanyuan, SUI Xiaopeng, CHEN Xinxin, LI Liudong, WANG Haitao. Relationship between left ventricular hypertrophy diagnosed by Peguero-Lo-Presti index and recurrence after radiofrequency catheter ablation of paroxysmal atrial fibrillation [J]. Tianjin Medical Journal, 2024, 52(2): 210-214. |
| [9] | ZHANG Jinwu, XIE Dingling, CHEN Li. The effect of securinine on neurological function recovery after cerebral ischemia-reperfusion injury in rats [J]. Tianjin Medical Journal, 2023, 51(9): 977-982. |
| [10] | HUO Liwei, LIU Jun, ZHENG Binbin, BI Xuena. Predictive value of serum FGF-23 in recurrence of patients with atrial fibrillation after radiofrequency ablation [J]. Tianjin Medical Journal, 2023, 51(1): 74-77. |
| [11] | XING Jianong, LIANG Zhuo, XING Aijun, LIU Junlan, PENG Hongchao, ZHANG Tianhua, ZHANG Chunlai. Effects of lncRNA MIAT on ventricular remodeling and myocardial fibrosis in rats with atrial fibrillation through targeting regulation of miR-128-3p [J]. Tianjin Medical Journal, 2022, 50(9): 932-937. |
| [12] | HE Hongmei, SUN Jian, WANG Huanhuan, MA Shujing, ZHANG Haiyan, ZOU Yu'an, XUE Qian, SONG Aixia. Risk factors for vascular dementia in patients with nonvalvular atrial fibrillation: a case-control study [J]. Tianjin Medical Journal, 2022, 50(8): 840-843. |
| [13] | ZHANG Xuteng, LIU Fang, CHEN Jun, LIU Xiaomeng, JIN Le, GAO Hongmei△. Research progress of PI3K/AKT signaling pathway in atrial fibrillation [J]. Tianjin Medical Journal, 2022, 50(5): 556-560. |
| [14] | HUO Ning, ZHAN Xiaoping, ZHOU Mengzhu, ZHANG Yue, LIANG Xue, LI Guangping, LIU Changle. Effects of glyburide on atrial remodeling and atrial fibrillation induction in diabetic rats [J]. Tianjin Medical Journal, 2022, 50(3): 253-258. |
| [15] | LU Jie, ZHANG Xin, WANG Tao, YANG Ning. Effects of circRNAs on atrial fibrillation and its mechanism [J]. Tianjin Medical Journal, 2022, 50(3): 333-336. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||