Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (5): 557-560.doi: 10.11958/20231735
• Review • Previous Articles
Received:
2023-11-10
Revised:
2023-11-24
Published:
2024-05-15
Online:
2024-05-09
Contact:
△ E-mail:JIA Xirui, LIU Lijie. The role and research progress of microglia in sepsis related encephalopathy[J]. Tianjin Medical Journal, 2024, 52(5): 557-560.
CLC Number:
[1] | LIU D, HUANG S Y, SUN J H, et al. Sepsis-induced immunosuppression:mechanisms,diagnosis and current treatment options[J]. Mil Med Res, 2022, 9(1):56. doi:10.1186/s40779-022-00422-y. |
[2] | MORAES C A, ZAVERUCHA-DO-VALLE C, FLEURANCE R, et al. Neuroinflammation in sepsis:molecular pathways of microglia activation[J]. Pharmaceuticals(Basel), 2021, 14(5):416. doi:10.3390/ph14050416. |
[3] | YAN X, YANG K, XIAO Q, et al. Central role of microglia in sepsis-associated encephalopathy:from mechanism to therapy[J]. Front Immunol, 2022, 13:929316. doi:10.3389/fimmu.2022.929316. |
[4] | CATARINA A V, BRANCHINI G, BETTONI L, et al. Sepsis-associated encephalopathy:from pathophysiology to progress in experimental studies[J]. Mol Neurobiol, 2021, 58(6):2770-2779. doi:10.1007/s12035-021-02303-2. |
[5] | HEMING N, MAZERAUD A, VERDONK F, et al. Neuroanatomy of sepsis-associated encephalopathy[J]. Crit Care, 2017, 21(1):65. doi:10.1186/s13054-017-1643-z. |
[6] | BARICHELLO T, GIRIDHARAN V V, CATALãO C, et al. Neurochemical effects of sepsis on the brain[J]. Clin Sci(Lond), 2023, 137(6):401-414. doi:10.1042/CS20220549. |
[7] | KANG R, GAMDZYK M, LENAHAN C, et al. The dual role of microglia in blood-brain barrier dysfunction after stroke[J]. Curr Neuropharmacol, 2020, 18(12):1237-1249. doi:10.2174/1570159X18666200529150907. |
[8] | BORST K, DUMAS A A, PRINZ M. Microglia:immune and non-immune functions[J]. Immunity, 2021, 54(10):2194-2208. doi:10.1016/j.immuni.2021.09.014. |
[9] | BENNETT M L, BENNETT F C. The influence of environment and origin on brain resident macrophages and implications for therapy[J]. Nat Neurosci, 2020, 23(2):157-166. doi:10.1038/s41593-019-0545-6. |
[10] | LI Y F, REN X, ZHANG L, et al. Microglial polarization in TBI:signaling pathways and influencing pharmaceuticals[J]. Front Aging Neurosci, 2022, 14:901117. doi:10.3389/fnagi.2022.901117. |
[11] | QIU Z, WANG H, QU M, et al. Consecutive injection of high-dose lipopolysaccharide modulates microglia polarization via TREM2 to alter status of septic mice[J]. Brain Sci, 2023, 13(1):126. doi:10.3390/brainsci13010126. |
[12] | FAIRLEY L H, LAI K O, WONG J H, et al. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2023, 120(8):e2209177120. doi:10.1073/pnas.2209177120. |
[13] | 庄欣琪, 谢克亮, 于泳浩, 等. 小胶质细胞与脓毒症脑病的研究进展[J]. 天津医药, 2020, 48(4):338-342. |
ZHUANG X Q, XIE K L, YU Y H, et al. Advances in research on microglia and sepsis associated encephalopathy[J] Tianjin Med J, 2020, 48(4):338-342. doi:10.11958/20193358. | |
[14] | PENG W, TAN C, MO L, et al. Glucose transporter 3 in neuronal glucose metabolism:health and diseases[J]. Metabolism, 2021, 123:154869. doi:10.1016/j.metabol.2021.154869. |
[15] | DE SOUZA STORK S, HÜBNER M, BIEHL E, et al. Diabetes exacerbates sepsis-induced neuroinflammation and brain mitochondrial dysfunction[J]. Inflammation, 2022, 45(6):2352-2367. doi:10.1007/s10753-022-01697-y. |
[16] | GU M, MEI X L, ZHAO Y N. Sepsis and cerebral dysfunction:BBB damage,neuroinflammation,oxidative stress,apoptosis and autophagy as key mediators and the potential therapeutic approaches[J]. Neurotox Res, 2021, 39(2):489-503. doi:10.1007/s12640-020-00270-5. |
[17] | ZHANG B, PAN C, FENG C, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep, 2022, 27(1):45-52. doi:10.1080/13510002.2022.2046423. |
[18] | RAUF A, BADONI H, ABU-IZNEID T, et al. Neuroinflammatory markers:key indicators in the pathology of neurodegenerative diseases[J]. Molecules, 2022, 27(10):3194. doi:10.3390/molecules27103194. |
[19] | GAO Q, HERNANDES M S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation, 2021, 44(6):2143-2150. doi:10.1007/s10753-021-01501-3. |
[20] | VAN DER POLL T, SHANKAR-HARI M, WIERSINGA W J. The immunology of sepsis[J]. Immunity, 2021, 54(11):2450-2464. doi:10.1016/j.immuni.2021.10.012. |
[21] | LI Y, YIN L, FAN Z, et al. Microglia:a potential therapeutic target for sepsis-associated encephalopathy and sepsis-associated chronic pain[J]. Front Pharmacol, 2020, 11:600421. doi:10.3389/fphar.2020.600421. |
[22] | TIEGS G, HORST A K. TNF in the liver:targeting a central player in inflammation[J]. Semin Immunopathol, 2022, 44(4):445-459. doi:10.1007/s00281-022-00910-2. |
[23] | CASTRO L V G, GONÇALVES-DE-ALBUQUERQUE C F, SILVA A R. Polarization of microglia and its therapeutic potential in sepsis[J]. Int J Mol Sci, 2022, 23(9):4925. doi:10.3390/ijms23094925. |
[24] | LI R, ZHOU Y, ZHANG S, et al. The natural(poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke[J]. Eur J Pharmacol, 2022, 914:174660. doi:10.1016/j.ejphar.2021.174660. |
[25] | MUNOZ PINTO M F, CAMPBELL S J, SIMOGLOU KARALI C, et al. Selective blood-brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein[J]. Neuro Oncol, 2022, 24(1):52-63. doi:10.1093/neuonc/noab177. |
[26] | TANG C, JIN Y, WANG H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy[J]. Front Synaptic Neurosci, 2022, 14:1054605. doi:10.3389/fnsyn.2022.1054605. |
[27] | IOVINO L, TREMBLAY M E, CIVIERO L. Glutamate-induced excitotoxicity in Parkinson's disease:the role of glial cells[J]. J Pharmacol Sci, 2020, 144(3):151-164. doi:10.1016/j.jphs.2020.07.011. |
[28] | PIOVESANA R, SALAZAR INTRIAGO M S, DINI L, et al. Cholinergic modulation of neuroinflammation:focus on α7 nicotinic receptor[J]. Int J Mol Sci, 2021, 22(9):4912. doi:10.3390/ijms22094912. |
[29] | XIA Y, WU Q, MAK S, et al. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells[J]. FASEB J, 2022, 36(3):e22189. doi:10.1096/fj.202101302RR. |
[30] | QIN M, GAO Y, GUO S, et al. Establishment and evaluation of animal models of sepsis-associated encephalopathy[J]. World J Emerg Med, 2023, 14(5):349-353. doi:10.5847/wjem.j.1920-8642.2023.088. |
[31] | WANG C, LI H, CHEN C, et al. High-fat diet consumption induces neurobehavioral abnormalities and neuronal morphological alterations accompanied by excessive microglial activation in the medial prefrontal cortex in adolescent mice[J]. Int J Mol Sci, 2023, 24(11):9394. doi:10.3390/ijms24119394. |
[32] | ZONG M M, ZHOU Z Q, JI M H, et al. Activation of β2-adrenoceptor attenuates sepsis-induced hippocampus-dependent cognitive impairments by reversing neuroinflammation and synaptic abnormalities[J]. Front Cell Neurosci, 2019, 13:293. doi:10.3389/fncel.2019.00293. |
[33] | EL-HUSSEINI A E, SCHNELL E, CHETKOVICH D M, et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science, 2000, 290(5495):1364-1368. doi:10.1126/science.290.5495.1364. |
[34] | WU H, WANG Y, FU H, et al. Maresin1 ameliorates sepsis-induced microglial neuritis induced through blocking TLR4-NF-κB-NLRP3 signaling pathway[J]. J Pers Med, 2023, 13(3):534. doi:10.3390/jpm13030534. |
[35] | LUO X Y, YING J H, WANG Q S. miR-25-3p ameliorates SAE by targeting the TLR4/NLRP3 axis[J]. Metab Brain Dis, 2022, 37(6):1803-1813. doi:10.1007/s11011-022-01017-1. |
[36] | BAKHSHI S, SHAMSI S. MCC950 in the treatment of NLRP3-mediated inflammatory diseases:latest evidence and therapeutic outcomes[J]. Int Immunopharmacol, 2022, 106:108595. doi:10.1016/j.intimp.2022.108595. |
[37] | SHEN Y, ZHANG Y, DU J, et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation, 2021, 18(1):246. doi:10.1186/s12974-021-02300-1. |
[38] | LIU W, TASO O, WANG R, et al. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions[J]. Hum Mol Genet, 2020, 29(19):3224-3248. doi:10.1093/hmg/ddaa209. |
[39] | BERNIER L P, YORK E M, MACVICAR B A. Immunometabolism in the brain:how metabolism shapes microglial function[J]. Trends Neurosci, 2020, 43(11):854-869. doi:10.1016/j.tins.2020.08.008. |
[40] | CHENG J, ZHANG R, XU Z, et al. Early glycolytic reprogramming controls microglial inflammatory activation[J]. J Neuroinflammation, 2021, 18(1):129. doi:10.1186/s12974-021-02187-y. |
[1] | CHEN Jingjing, NONG Zhangsong, TAN Liangyuan, YANG Peipei, LIANG Yingye, TANG Hongliang, WANG Kailong. Research progress on the role of microglia polarization in neuropathic pain [J]. Tianjin Medical Journal, 2024, 52(9): 1000-1003. |
[2] | JIA Weining, BAO Yaling, LEI Hui, YIN Xiaoning. The effect of prunella vulgaris extract on inflammatory response and peritoneal macrophages in septic mice [J]. Tianjin Medical Journal, 2024, 52(9): 930-935. |
[3] | LIU Bin, YANG Long, LI Wenli, SHAO Ningning, DONG Jinrui. Mechanism of microglia ferroptosis in smoke inhalation-induced brain injury [J]. Tianjin Medical Journal, 2024, 52(8): 791-797. |
[4] | ZHONG Min, SHI Zhen, ZHOU Jinsong, LI Jinjie. Effects of GABA signaling pathway on endoplasmic reticulum stress and mitochondrial autophagy in septic rats with acute lung injury [J]. Tianjin Medical Journal, 2024, 52(7): 733-737. |
[5] | MU Jingran, LUO Yan, LIANG Xuan, XU Tao, ZENG Junwei, LIU Xiaohong. Research progress on the activation of complement system is involved in the pathogenesis of Alzheimer's disease [J]. Tianjin Medical Journal, 2024, 52(6): 663-668. |
[6] | REN Yan, CHEN Shanping, ZHOU Lihua, WANG Lingxiao, GUAN Lijuan, YANG Yongxue. The predictive value of laboratory frailty index for the risk of sepsis and septic shock in elderly CAP inpatients [J]. Tianjin Medical Journal, 2024, 52(4): 416-421. |
[7] | XIAO Yuqian, SUN Kexin, WAN Jun, CHEN Shuying, CHEN Limin, WANG Yan, BAI Yanjie. Research progress of RNA m6A methylation in post-stroke cognitive impairment [J]. Tianjin Medical Journal, 2024, 52(3): 331-336. |
[8] | OUYANG Jie, ZHAO Haiqian, KONG Yun, NIU Qin, CHEN Ying, SI Yongyu. The effect of electroacupuncture on paclitaxel-induced neuropathic pain in rats [J]. Tianjin Medical Journal, 2024, 52(11): 1141-1145. |
[9] | XU Fang, LIANG Yi, HE Yong, XU Julong. Impact of sufentanil on liver injury in burn-induced sepsis rats by regulating JAK2/STAT3 signaling pathway [J]. Tianjin Medical Journal, 2024, 52(11): 1158-1163. |
[10] | YU Hong, YANG Chaodong, LIU dan. The relationship between ALT/ALP ratio, PLR and hepatic injury in elderly patients with septic shock [J]. Tianjin Medical Journal, 2024, 52(11): 1211-1215. |
[11] | LIAO Zhong, LIAO Weijian, LAI Guoli, WEN Yin, SU Zhiwei, ZENG Juhao, DING Hongguang. Study on the effect of fisetin on alleviating cognitive impairment after sepsis by inhibiting the activation of microglial NLPR3 inflammasome [J]. Tianjin Medical Journal, 2024, 52(10): 1025-1030. |
[12] | LIU Yingying, JIANG Qiannan, ZHANG Yanyan, LIU Xiuxiang. Effect of histologic chorioamnionitis on clinical outcomes in preterm infants with a gestational age less than 34 weeks: a propensity score matching study [J]. Tianjin Medical Journal, 2024, 52(1): 87-90. |
[13] | YU Bingchang, LAI Zhenyu, ZHAO Zhanqing, XIE Xiaofang, CAI Qiuyan. The prognostic value of serum sFasL and s-Met levels in patients with sepsis secondary to pneumonia [J]. Tianjin Medical Journal, 2023, 51(9): 983-987. |
[14] | SUN Liyan, LIU Zeru, SU Yongsheng, AI Hongliang. Effect of asperuloside on pyroptosis of lung tissue in septic rats by regulating NLRP3/Caspase-1/GSDMD signaling pathway [J]. Tianjin Medical Journal, 2023, 51(6): 607-612. |
[15] | MA Huiqing, LIU Yang. Application of peripheral arteriovenous exchange transfusion in neonatal diseases [J]. Tianjin Medical Journal, 2023, 51(5): 556-560. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||