Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (10): 1040-1047.doi: 10.11958/20222053
• Cell and Molecular Biology • Previous Articles Next Articles
ZHANG Cong(), FENG Hua, HUANG Xiaolong, WANG Xuan
Received:
2023-01-09
Revised:
2023-03-07
Published:
2023-10-15
Online:
2023-10-18
ZHANG Cong, FENG Hua, HUANG Xiaolong, WANG Xuan. Impacts of Casticin on biological behavior of gastric cancer cells by regulating miR-378/PRRX1 axis[J]. Tianjin Medical Journal, 2023, 51(10): 1040-1047.
CLC Number:
组别 | 细胞活力/% | 集落形成 数量/个 | 细胞凋亡率/% |
---|---|---|---|
对照组 | 100.00±0.00 | 124.56±10.25 | 4.01±0.24 |
Cas低浓度组 | 81.12±7.62a | 88.26±7.06a | 8.20±0.85a |
Cas中浓度组 | 68.24±6.53ab | 74.15±6.85ab | 15.83±1.77ab |
Cas高浓度组 | 52.03±5.07abc | 60.24±5.12abc | 26.57±2.19abc |
Cas高浓度+miR- 378 siRNA组 | 77.04±6.80d | 86.35±7.68d | 8.64±0.93d |
Cas高浓度+ PRRX1组 | 80.28±7.71d | 90.36±9.34d | 9.02±1.05d |
Cas高浓度+miR- 378 siRNA+ PRRX1组 | 93.40±8.55ef | 115.28±10.17ef | 5.10±0.47ef |
F | 34.436** | 43.591** | 235.574** |
Tab.1 Comparison of SGC-7901 cell viability, colony formation number and cell apoptosis rate between the seven groups
组别 | 细胞活力/% | 集落形成 数量/个 | 细胞凋亡率/% |
---|---|---|---|
对照组 | 100.00±0.00 | 124.56±10.25 | 4.01±0.24 |
Cas低浓度组 | 81.12±7.62a | 88.26±7.06a | 8.20±0.85a |
Cas中浓度组 | 68.24±6.53ab | 74.15±6.85ab | 15.83±1.77ab |
Cas高浓度组 | 52.03±5.07abc | 60.24±5.12abc | 26.57±2.19abc |
Cas高浓度+miR- 378 siRNA组 | 77.04±6.80d | 86.35±7.68d | 8.64±0.93d |
Cas高浓度+ PRRX1组 | 80.28±7.71d | 90.36±9.34d | 9.02±1.05d |
Cas高浓度+miR- 378 siRNA+ PRRX1组 | 93.40±8.55ef | 115.28±10.17ef | 5.10±0.47ef |
F | 34.436** | 43.591** | 235.574** |
组别 | 侵袭细胞数量/ (个/视野) | 划痕愈合率/% |
---|---|---|
对照组 | 240.15±22.15 | 65.34±5.89 |
Cas低浓度组 | 191.34±18.79a | 42.29±4.05a |
Cas中浓度组 | 151.62±13.49ab | 34.80±3.15ab |
Cas高浓度组 | 114.39±10.36abc | 24.33±2.08abc |
Cas高浓度+miR-378 siRNA组 | 163.69±15.21d | 40.12±4.08d |
Cas高浓度+PRRX1组 | 169.62±17.05d | 41.61±5.07d |
Cas高浓度+miR-378 siRNA+ PRRX1组 | 228.75±20.34ef | 57.35±5.64ef |
F | 39.274** | 56.610** |
Tab.2 Comparison of the number of invasive cells and scratch healing rate of SGC-7901 cells between the seven groups
组别 | 侵袭细胞数量/ (个/视野) | 划痕愈合率/% |
---|---|---|
对照组 | 240.15±22.15 | 65.34±5.89 |
Cas低浓度组 | 191.34±18.79a | 42.29±4.05a |
Cas中浓度组 | 151.62±13.49ab | 34.80±3.15ab |
Cas高浓度组 | 114.39±10.36abc | 24.33±2.08abc |
Cas高浓度+miR-378 siRNA组 | 163.69±15.21d | 40.12±4.08d |
Cas高浓度+PRRX1组 | 169.62±17.05d | 41.61±5.07d |
Cas高浓度+miR-378 siRNA+ PRRX1组 | 228.75±20.34ef | 57.35±5.64ef |
F | 39.274** | 56.610** |
组别 | miR-378 | PRRX1蛋白 (/GAPDH) |
---|---|---|
对照组 | 1.02±0.05 | 0.85±0.07 |
Cas低浓度组 | 1.58±0.10a | 0.68±0.06a |
Cas中浓度组 | 1.96±0.18ab | 0.57±0.06ab |
Cas高浓度组 | 2.34±0.21abc | 0.46±0.04abc |
Cas高浓度+miR-378 siRNA组 | 1.56±0.14d | 0.58±0.06d |
Cas高浓度+PRRX1组 | 2.31±0.20e | 0.62±0.07d |
Cas高浓度+miR-378 siRNA+ PRRX1组 | 1.54±0.16f | 0.79±0.06ef |
F | 54.139** | 29.519** |
Tab.3 Comparison of miR-378 and PRRX1 protein expression levels between the seven groups of SGC-7901 cells
组别 | miR-378 | PRRX1蛋白 (/GAPDH) |
---|---|---|
对照组 | 1.02±0.05 | 0.85±0.07 |
Cas低浓度组 | 1.58±0.10a | 0.68±0.06a |
Cas中浓度组 | 1.96±0.18ab | 0.57±0.06ab |
Cas高浓度组 | 2.34±0.21abc | 0.46±0.04abc |
Cas高浓度+miR-378 siRNA组 | 1.56±0.14d | 0.58±0.06d |
Cas高浓度+PRRX1组 | 2.31±0.20e | 0.62±0.07d |
Cas高浓度+miR-378 siRNA+ PRRX1组 | 1.54±0.16f | 0.79±0.06ef |
F | 54.139** | 29.519** |
组别 | PRRX1-WT | PRRX1-MUT |
---|---|---|
miR-NC mimics | 1.02±0.05 | 0.99±0.07 |
miR-378 mimics | 0.46±0.04 | 0.95±0.06 |
t | 22.840** | 1.079 |
Tab.4 Comparison of relative activity of luciferase between the two groups of SGC-7901 cells
组别 | PRRX1-WT | PRRX1-MUT |
---|---|---|
miR-NC mimics | 1.02±0.05 | 0.99±0.07 |
miR-378 mimics | 0.46±0.04 | 0.95±0.06 |
t | 22.840** | 1.079 |
组别 | 肿瘤体积/mm3 | 肿瘤质量/g | miR-378 |
---|---|---|---|
模型组 | 1 225.23±145.36 | 0.89±0.06 | 1.02±0.04 |
Cas组 | 352.78±42.26a | 0.28±0.03a | 1.87±0.15a |
Cas+miR-378 siRNA组 | 754.12±70.86b | 0.60±0.05b | 1.29±0.11b |
F | 102.392** | 199.500** | 78.163** |
Tab.5 Comparison of tumor volume, tumor weight and miR-378 expression level in tumor tissue of xenotransplantation nude mice between the three groups
组别 | 肿瘤体积/mm3 | 肿瘤质量/g | miR-378 |
---|---|---|---|
模型组 | 1 225.23±145.36 | 0.89±0.06 | 1.02±0.04 |
Cas组 | 352.78±42.26a | 0.28±0.03a | 1.87±0.15a |
Cas+miR-378 siRNA组 | 754.12±70.86b | 0.60±0.05b | 1.29±0.11b |
F | 102.392** | 199.500** | 78.163** |
[1] | LORDICK F, CARNEIRO F, CASCINU S, et al. Gastric cancer:ESMO Clinical Practice Guideline for diagnosis,treatment and follow-up[J]. Ann Oncol, 2022, 33(10):1005-1020. doi:10.1016/j.annonc.2022.07.004. |
[2] | WANG M, YU F, ZHANG Y, et al. The effects and mechanisms of flavonoids on cancer prevention and therapy:focus on gut microbiota[J]. Int J Biol Sci, 2022, 18(4):1451-1475. doi:10.7150/ijbs.68170. |
[3] | RAMCHANDANI S, NAZ I, LEE J H, et al. An overview of the potential antineoplastic effects of casticin[J]. Molecules, 2020, 25(6):1287-1293. doi:10.3390/molecules25061287. |
[4] | KOWALSKI M, ASSA A, PATIL K, et al. Casticin impacts key signaling pathways in colorectal cancer cells leading to cell death with therapeutic implications[J]. Genes (Basel), 2022, 13(5):815. doi:10.3390/genes13050815. |
[5] | YANG F, HE K, HUANG L, et al. Casticin inhibits the activity of transcription factor Sp1 and the methylation of RECK in MGC803 gastric cancer cells[J]. Exp Ther Med, 2017, 13(2):745-750. doi:10.3892/etm.2016.4003. |
[6] | ZHANG Y, LIN W, JIANG W, et al. MicroRNA-18 facilitates the stemness of gastric cancer by downregulating HMGB3 though targeting Meis2[J]. Bioengineered, 2022, 13(4):9959-9972. doi:10.1080/21655979.2022.2062529. |
[7] | YU K, WANG J, HOU J, et al. miR-338-3p plays a significant role in casticin-induced suppression of acute myeloid leukemia via targeting PI3K/Akt pathway[J]. Biomed Res Int, 2022, 2022:9214130. doi:10.1155/2022/9214130. |
[8] | LI X, WANG L, CAO X, et al. Casticin inhibits stemness of hepatocellular carcinoma cells via disrupting the reciprocal negative regulation between DNMT1 and miR-148a-3p[J]. Toxicol Appl Pharmacol, 2020, 396:114998. doi:10.1016/j.taap.2020.114998. |
[9] | YANG Y J, LUO S, WANG L S. Effects of microRNA-378 on epithelial-mesenchymal transition, migration, invasion and prognosis in gastric carcinoma by targeting BMP2[J]. Eur Rev Med Pharmacol Sci, 2019, 23(12):5176-5186. doi:10.26355/eurrev_201906_18182. |
[10] | YAO J, ZHANG Y, XIA Y, et al. PRRX1 promotes lymph node metastasis of gastric cancer by regulating epithelial-mesenchymal transition[J]. Medicine(Baltimore), 2021, 100(6):e24674. doi:10.1097/MD.0000000000024674. |
[11] | 李遂新, 雷光焰, 马晓军, 等. 蔓荆子黄素对人非小细胞肺癌细胞H322的作用及机制研究[J]. 现代肿瘤医学, 2020, 28(7):1072-1076. |
LI S X, LEI G Y, MA X J, et al. The effects and mechanism of vitexicarpin on human non-small cell lung cancer cell H322[J]. Modern Oncology, 2020, 28(7):1072-1076. doi:10.3969/j.issn.1672-4992.2020.07.004. | |
[12] | QIAO Z, CHENG Y, LIU S, et al. Casticin inhibits esophageal cancer cell proliferation and promotes apoptosis by regulating mitochondrial apoptotic and JNK signaling pathways[J]. Naunyn Schmiedebergs Arch Pharmacol, 2019, 392(2):177-187. doi:10.1007/s00210-018-1574-5. |
[13] | LI X, SUN Z, PENG G, et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer[J]. Theranostics, 2022, 12(2):620-638. doi:10.7150/thno.60540. |
[14] | ZHOU Y, DING B Z, LIN Y P, et al. MiR-34a, as a suppressor, enhance the susceptibility of gastric cancer cell to luteolin by directly targeting HK1[J]. Gene, 2018, 644(1):56-65. doi:10.1016/j.gene.2017.10.046. |
[15] | WANG Q, CHEN Y, LU H, et al. Quercetin radiosensitizes non-small cell lung cancer cells through the regulation of miR-16-5p/WEE1 axis[J]. IUBMB Life, 2020, 72(5):1012-1022. doi:10.1002/iub.2242. |
[16] | SHENG B, ZHAO L, ZANG X, et al. Quercetin inhibits caerulein-induced acute pancreatitis through regulating miR-216b by targeting MAP2K6 and NEAT1[J]. Inflammopharmacology, 2021, 29(2):549-559. doi:10.1007/s10787-020-00767-7. |
[17] | SHANG H S, CHEN K W, CHOU J S, et al. Casticin inhibits in vivo growth of xenograft tumors of human oral cancer SCC-4 cells[J]. In Vivo, 2020, 34(5):2461-2467. doi:10.21873/invivo.12061. |
[18] | MOSIER J A, SCHWAGER S C, BOYAJIAN D A, et al. Cancer cell metabolic plasticity in migration and metastasis[J]. Clin Exp Metastasis, 2021, 38(4):343-359. doi:10.1007/s10585-021-10102-1. |
[19] | JIN W, WANG L, CHENG S, et al. Prognostic value of microRNA-378 in esophageal cancer and its regulatory effect on tumor progression[J]. Exp Ther Med, 2021, 22(1):704-711. doi:10.3892/etm.2021.10136. |
[20] | WANG J, LI Y, ZHOU J H, et al. CircATRNL1 activates Smad4 signaling to inhibit angiogenesis and ovarian cancer metastasis via miR-378[J]. Mol Oncol, 2021, 15(4):1217-1233. doi:10.1002/1878-0261.12893. |
[21] | DU W, LIU X, YANG M, et al. The regulatory role of PRRX1 in cancer epithelial-mesenchymal transition[J]. Onco Targets Ther, 2021, 14(3):4223-4229. doi:10.2147/OTT.S316102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||