Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (12): 1251-1255.doi: 10.11958/20240663
• Experimental Research • Previous Articles Next Articles
ZHENG Yaru(), HUANG Yibin, SU Xiaoping△(
), ZHANG Yanjun
Received:
2024-05-28
Revised:
2024-08-15
Published:
2024-12-15
Online:
2024-12-17
Contact:
△E-mail:ZHENG Yaru, HUANG Yibin, SU Xiaoping, ZHANG Yanjun. Effects of quercetin on periodontal tissue angiogenesis during orthodontic tooth movement in rats by regulating HIF-1α/VEGF signaling pathway[J]. Tianjin Medical Journal, 2024, 52(12): 1251-1255.
CLC Number:
组别 | 第一磨牙移动距离/mm# | 血管数/支## |
---|---|---|
Control组 | 0.00±0.00 | 3.36±0.22 |
Model组 | 0.58±0.06a | 0.75±0.08a |
QUE-L组 | 0.41±0.04b | 1.81±0.14b |
QUE-H组 | 0.25±0.03bc | 3.25±0.19bc |
QUE-H+YC-1组 | 0.49±0.05d | 1.53±0.12d |
F | 363.698** | 616.525** |
Tab.1 Comparison of travel distance of first molar and number of blood vessels in periodontal tissue of rats between the five groups
组别 | 第一磨牙移动距离/mm# | 血管数/支## |
---|---|---|
Control组 | 0.00±0.00 | 3.36±0.22 |
Model组 | 0.58±0.06a | 0.75±0.08a |
QUE-L组 | 0.41±0.04b | 1.81±0.14b |
QUE-H组 | 0.25±0.03bc | 3.25±0.19bc |
QUE-H+YC-1组 | 0.49±0.05d | 1.53±0.12d |
F | 363.698** | 616.525** |
组别 | HIF-1α | VEGF |
---|---|---|
Control组 | 0.92±0.07 | 1.21±0.11 |
Model组 | 0.25±0.03a | 0.33±0.03a |
QUE-L组 | 0.43±0.04b | 0.62±0.05b |
QUE-H组 | 0.74±0.06bc | 0.97±0.07bc |
QUE-H+YC-1组 | 0.35±0.04d | 0.76±0.05d |
F | 188.500** | 147.210** |
Tab.2 Comparison of HIF-1α/VEGF signaling pathway related protein expression in periodontal tissue of rats between the five groups
组别 | HIF-1α | VEGF |
---|---|---|
Control组 | 0.92±0.07 | 1.21±0.11 |
Model组 | 0.25±0.03a | 0.33±0.03a |
QUE-L组 | 0.43±0.04b | 0.62±0.05b |
QUE-H组 | 0.74±0.06bc | 0.97±0.07bc |
QUE-H+YC-1组 | 0.35±0.04d | 0.76±0.05d |
F | 188.500** | 147.210** |
组别 | BMP2 | BMP4 |
---|---|---|
Control组 | 0.81±0.08 | 0.87±0.09 |
Model组 | 0.31±0.03a | 0.35±0.04a |
QUE-L组 | 0.52±0.05b | 0.57±0.06b |
QUE-H组 | 0.77±0.08bc | 0.85±0.09bc |
QUE-H+YC-1组 | 0.46±0.05d | 0.49±0.05d |
F | 72.080** | 65.121** |
Tab.3 Comparison of BMP2 and BMP4 expression in periodontal tissue of rats between the five groups
组别 | BMP2 | BMP4 |
---|---|---|
Control组 | 0.81±0.08 | 0.87±0.09 |
Model组 | 0.31±0.03a | 0.35±0.04a |
QUE-L组 | 0.52±0.05b | 0.57±0.06b |
QUE-H组 | 0.77±0.08bc | 0.85±0.09bc |
QUE-H+YC-1组 | 0.46±0.05d | 0.49±0.05d |
F | 72.080** | 65.121** |
[1] | MORRIS H T, CAMPBELL R E, KISSLING A D, et al. Observation periods before tooth movement in orthodontic patients who have experienced mild-to-moderate dental trauma:a scoping review of current evidence[J]. J World Fed Orthod, 2022, 11(3):59-68. doi:10.1016/j.ejwf.2021.12.003. |
[2] | MANDELARIS G A, RICHMAN C, KAO R T. Surgical considerations and decision making in surgically facilitated orthodontic treatment/periodontally accelerated osteogenic orthodontics[J]. Clin Adv Periodontics, 2020, 10(4):213-223. doi:10.1002/cap.10116. |
[3] | ARQUB S A, AL-ZUBI K, IVERSON M G, et al. The biological sex lens on early orthopaedic treatment duration and outcomes in Class III orthodontic patients:a systematic review[J]. Eur J Orthod, 2022, 44(3):311-324. doi:10.1093/ejo/cjab058. |
[4] | YANG S Y, HU Y, ZHAO R, et al. Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitis via the miR-21a-5p/PDCD4/NF-κB pathway[J]. J Nanobiotechnology, 2024, 22(1):94. doi:10.1186/s12951-024-02352-4. |
[5] | GUO Q, YANG J, CHEN Y, et al. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment[J]. Eur J Pharmacol, 2020, 884:173394. doi:10.1016/j.ejphar.2020.173394. |
[6] | 代书林, 王旭霞, 乜福娇, 等. 异普黄酮对大鼠正畸牙复发过程中牙周组织改建的影响[J]. 上海口腔医学, 2021, 30(1):23-27. |
DAI S L, WANG X X, NIE F J, et al. Effect of ipriflavone on reconstruction of periodontal tissues during recurrence of orthodontic teeth in rats[J]. Shanghai Journal of Stomatology, 2021, 30(1):23-27. doi:10.19439/j.sjos.2021.01.005. | |
[7] | 郭晓雨, 李淑娟, 梁向阳, 等. 槲皮素脂质体对糖尿病牙周炎大鼠牙周组织的作用及血清AGEs的影响[J]. 口腔医学研究, 2021, 37(7):628-631. |
GUO X Y, LI S J, LIANG X Y, et al. Effect of quercetin on periodontal tissues and serum AGEs levels in rats with diabetic periodontitis[J]. Journal of Oral Science Research, 2021, 37(7):628-631. doi:10.13701/j.cnki.kqyxyj.2021.07.011. | |
[8] | 曾秀安, 厉孟, 杨其兵, 等. 二甲基乙二酰基甘氨酸对跨区穿支皮瓣Choke Ⅱ区血管数的影响机制研究[J]. 中国修复重建外科杂志, 2022, 36(2):224-230. |
ZENG X A, LI M, YANG Q B, et al. Effect of dimethylglycine on angiogenesis in Choke Ⅱ of Transregional perforator flap[J]. Chinese Journal of Prosthoplastic and Reconstructive Surgery, 2022, 36(2):224-230. doi:10.7507/1002-1892.202107103. | |
[9] | DENG L, CHEN Y, GUO J, et al. Roles and mechanisms of YAP/TAZ in orthodontic tooth movement[J]. J Cell Physiol, 2021, 236(11):7792-7800. doi:10.1002/jcp.30388. |
[10] | 周杨一帆, 唐燚, 别苗苗, 等. 外科技术辅助加速正畸牙移动的生物学机制研究进展[J]. 口腔颌面外科杂志, 2023, 33(6):402-405. |
ZHOU Y Y F, TANG Y, BIE M M, et al. Advances in biological mechanisms of accelerated orthodontic tooth movement assisted by surgical techniques[J]. Journal of Oral and Maxillofacial Surgery, 2023, 33(6):402-405. doi:10.12439/kqhm.1005-4979.2023.06.009. | |
[11] | WANG Y, TAO B, WAN Y, et al. Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases[J]. Biomed Pharmacother, 2020, 128:110372. doi:10.1016/j.biopha.2020.110372. |
[12] | RUANGSURIYA J, CHARUMANEE S, JIRANUSORNKUL S, et al. Depletion of β-sitosterol and enrichment of quercetin and rutin in Cissus quadrangularis Linn fraction enhanced osteogenic but reduced osteoclastogenic marker expression[J]. BMC Complement Med Ther, 2020, 20(1):105. doi:10.1186/s12906-020-02892-w. |
[13] | 胡韶光, 刘珂珂, 汪芹芹, 等. 槲皮素对牙髓间充质细胞成骨能力及兔颅骨缺损修复的影响[J]. 中国药理学通报, 2021, 37(11):1536-1541. |
HU S G, LIU K K, WANG Q Q, et al. Effect of quercetin on bone formation ability of dental pulp mesenchymal cells and repair of skull defect in rabbits[J]. Chinese Pharmacological Bulletin, 2021, 37(11):1536-1541. doi:10.3969/j.issn.1001-1978.2021.11.011. | |
[14] | MARCANTONIO C C, NOGUEIRA A, LEGUIZAMÓN N, et al. Effects of obesity on periodontal tissue remodeling during orthodontic movement[J]. Am J Orthod Dentofacial Orthop, 2021, 159(4):480-490. doi:10.1016/j.ajodo.2019.12.025. |
[15] | 田静, 王子龙, 肖丹娜, 等. 不同咀嚼压力对大鼠正畸移动牙压力侧牙槽骨改建的影响[J]. 天津医药, 2024, 52(4):367-372. |
TIAN J, WANG Z L, XIAO D N, et al. Effect of different masticatory pressure on alveolar bone remodeling in orthodontic moving teeth in rats[J]. Tianjin Med J, 2024, 52(4):367-372. doi:10.11958/20230630. | |
[16] | 贾慧, 康凯, 杨磊. 促红细胞生成素对正畸牙复发大鼠牙周组织改建及Wnt/β-catenin信号通路的影响[J]. 陕西医学杂志, 2024, 53(2):163-167,172. |
JIA H, KANG K, YANG L. Effects of erythropoietin on periodontal tissue remodeling and Wnt/β-catenin signaling pathway in rats with orthodontic tooth recurrence[J]. Shaanxi Medical Journal, 2024, 53(2):163-167,172. doi:10.3969/j.issn.1000-7377.2024.02.004. | |
[17] | 左新慧, 李君, 韩祥祯, 等. 体外研究BMSCs中HIF-1α过表达与低表达对成骨和成血管相关因子的影响研究[J]. 临床口腔医学杂志, 2020, 36(4):206-211. |
ZUO X H, LI J, HAN X Z, et al. Effect of HIF-1α overexpression and low expression on osteogenic and angiogenic factors in BMSCs in vitro[J]. Journal of Clinical Stomatology, 2020, 36(4):206-211. doi:10.3969/j.issn.1003-1634.2020.04.005. | |
[18] | 王洁, 朱锐, 李永明. 低氧对大鼠牙周组织成骨及成血管能力影响的初步研究[J]. 实用口腔医学杂志, 2023, 39(3):307-312. |
WANG J, ZHU R, LI Y M. Effect of hypoxia on osteogenesis and angiogenesis of periodontal tissue in rats[J]. Journal of Practical Stomatology, 2023, 39(3):307-312. doi:10.3969/j.issn.1001-3733.2023.03.006. | |
[19] | 李媛媛, 陈丹, 吴蓓. 过表达低氧诱导因子1α对乳牙牙髓干细胞向血管内皮细胞分化影响的实验研究[J]. 中国修复重建外科杂志, 2021, 35(6):761-768. |
LI Y Y, CHEN D, WU B. Effect of overexpression of hypoxic inducible factor 1α on the differentiation of dental pulp stem cells into vascular endothelial cells[J]. Chinese Journal of Prosthoplastic and Reconstructive Surgery, 2021, 35(6):761-768. doi:10.7507/1002-1892.202012024. | |
[20] | ULLRICH N, SCHRÖDER A, BAUER M, et al. The role of HIF-1α in nicotine-induced root and bone resorption during orthodontic tooth movement[J]. Eur J Orthod, 2021, 43(5):516-526. doi:10.1093/ejo/cjaa057. |
[21] | 安晓晖, 刘恩, 吕飞, 等. 基于VEGF/VEGFR-2信号通路探讨穿山龙总皂苷促进去势大鼠骨折血管形成和骨折愈合的效果[J]. 中国中医急症, 2020, 29(5):846-849,869. |
AN X H, LIU E, LYU F, et al. Study on the effect of total saponins of Pangolin on promoting fracture vasculogenesis and fracture healing in castrated rats based on VEGF/VEGFR-2 signaling pathway[J]. Chinese Medicine Emergency, 2020, 29(5):846-849,869. doi:10.3969/j.issn.1004-745X.2020.05.026. | |
[22] | HAORAN D, BANG L, RUI Y, et al. ETV2 regulating PHD2-HIF-1α axis controls metabolism reprogramming promotes vascularized bone regeneration[J]. Bioactive Materials, 2024, 37:222-238. doi:10.1016/j.bioactmat.2024.02.014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||