Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (8): 892-896.doi: 10.11958/20221822
• Review • Previous Articles
ZHANG Zhaoxia1,2(), NAN Xingmei1, LI Zhanqiang1, LU Dianxiang1,3,△(
)
Received:
2022-11-07
Revised:
2023-03-12
Published:
2023-08-15
Online:
2023-08-10
Contact:
△E-mail: ZHANG Zhaoxia, NAN Xingmei, LI Zhanqiang, LU Dianxiang. Research progress on the role of potassium channels and drug intervention in hypoxic pulmonary hypertension[J]. Tianjin Medical Journal, 2023, 51(8): 892-896.
CLC Number:
[1] | 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组, 等. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(1):11-51. |
The Pulmonary Embolism and Pulmonary Vascular Disease Group of Chinese Society of Respiratory Diseases, Chinese Medical Doctor Association Pulmonary Embolism and Pulmonary Vascular Disease Working Committee, National Cooperative Group for Prevention and Treatment of Pulmonary Embolism and Pulmonary Vascular Disease, et al. Chinese guidelines for the diagnosis and treatment of pulmonary hypertension(The 2021 version)[J]. Natl Med J China, 2021, 101(1):11-51. doi:10.3760/cma.j.cn112137-20201008-02778. | |
[2] | BRITO J, SIQUES P, PENA E. Long-term chronic intermittent hypoxia:a particular form of chronic high-altitude pulmonary hypertension[J]. Pulm Circ, 2020, 10(Suppl 1):5-12. doi:10.1177/2045894020934625. |
[3] | MONDÉJAR-PARREÑO G, COGOLLUDO A, PEREZ-VIZCAINO F. Potassium(K+)channels in the pulmonary vasculature:implications in pulmonary hypertension physiological,pathophysiological and pharmacological regulation[J]. Harmacol Ther, 2021, 225:107835. doi:10.1016/j.pharmthera.2021.107835. |
[4] | DOGAN M F, YILDIZ O, ARSLAN S O, et al. Potassium channels in vascular smooth muscle:a pathophysiological and pharmacological perspective[J]. Fundam Clin Pharmaco, 2019, 33(5):504-523. doi:10.1111/FCP.12461. |
[5] | SONG S, BABICHEVA A, ZHAO T, et al. Notch enhances Ca(2+) entry by activating calcium-sensing receptors and inhibiting voltage-gated K(+) channelsAm J Physiol Cell Physiol, 2020, 318(5):954-968. doi:10.1152/ajpcell.00487.201. |
[6] | DENG L, CHEN J, WANG T, et al. PDGF/MEK/ERK axis represses Ca(2+) clearance via decreasing the abundance of plasma membrane Ca(2+) pump PMCA4 in pulmonary arterial smooth muscle cells[J]. Am J Physiol Cell Physiol, 2021, 320(1):66-79. doi:10.1152/ajpcell.0290.2020. |
[7] | MEI L, ZHENG Y M, SONG T, et al. Rieske iron-sulfur protein induces FKBP12.6/RyR2 complex remodeling and subsequent pulmonary hypertension through NF-κB/cyclin D1 pathway[J]. Nat Commun, 2020, 11(1):3527. doi:10.1038/s41467-020-17314-1. |
[8] | HE Y, FANG X, SHI J, et al. Apigenin attenuates pulmonary hypertension by inducing mitochondria-dependent apoptosis of PASMCs via inhibiting the hypoxia inducible factor 1alpha-KV1.5 channel pathway[J]. Chem Biol Interact, 2020, 317:108942. doi:10.1016/j.cbi.2020.108942. |
[9] | ZHANG R, LI Z, LIU C, et al. Pretreatment with the active fraction of Rhodiola tangutica(Maxim.)S.H. Fu rescues hypoxia-induced potassium channel inhibition in rat pulmonary artery smooth muscle cells[J]. J Ethnopharmacol, 2022, 283:114734. doi:10.1016/j.jep.2021.114734. |
[10] | MONDÉJAR-PARREÑO G, BARREIRA B, CALLEJO M, et al. Uncovered contribution of Kv7 channels to pulmonary vascular tone in pulmonary arterial hypertension[J]. Hypertension, 2020, 76(4):1134-1146. doi:10.1161/HYPERTENSIONAHA.120.15221. |
[11] | WU W, LI Y, XU D Q. Role of ROS/Kv/HIF axis in the development of hypoxia-induced pulmonary hypertension[J]. Chin Med Sci J, 2017, 32(4):47-53. doi:10.24920/J1001-9294.2017.037. |
[12] | BABICHEVA A, AYON R J, ZHAO T, et al. MicroRNA-mediated downregulation of K(+)channels in pulmonary arterial hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(1):10-26. doi:10.1152/ajplung.00010.2019. |
[13] | MONDÉJAR-PARREÑO G, CALLEJO M, BARREIRA B, et al. miR-1 is increased in pulmonary hypertension and downregulates Kv1.5 channels in rat pulmonary arteries[J]. J Physiol, 2019, 597(4):1185-1197. doi:10.1113/JP276054. |
[14] | HAYABUCHI Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension[J]. Pediatr Cardiol, 2017, 38(1):1-14. doi:10.1007/s00246-016-1491-1497. |
[15] | GUO S, SHEN Y, HE G, et al. Involvement of Ca(2+)-activated K(+) channel 3.1 in hypoxia-induced pulmonary arterial hypertension and therapeutic effects of TRAM-34 in rats[J]. Biosci Rep, 2017,37(4):BSR20170763. doi:10.1042/BSR20170763. |
[16] | MILARA J, BALLESTER B, MORELL A, et al. JAK2 mediates lung fibrosis,pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis:an experimental study[J]. Thorax, 2018, 73(6):519-529. doi:10.1136/thoraxjnl-2017-210728. |
[17] | HU H, DING Y, WANG Y, et al. MitoK(ATP)channels promote the proliferation of hypoxic human pulmonary artery smooth muscle cells via the ROS/HIF/miR-210/ISCU signaling pathway[J]. Exp Ther Med, 2017, 14(6):6105-6112. doi:10.3892/etm.2017.5322. |
[18] | PANDIT L M, LLOYD E E, REYNOLDS J O, et al. TWIK-2 channel deficiency leads to pulmonary hypertension through a Rho-kinase-mediated process[J]. Hypertension, 2014, 64(6):1260-1265. doi:10.1161/HYPERTENSIONAHA.114.03406. |
[19] | CALLEJO M, MONDÉJAR-PARREÑO G, MORALES-CANO D, et al. Vitamin D deficiency downregulates TASK-1 channels and induces pulmonary vascular dysfunction[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 319(4):627-640. doi:10.1152/ajplung.00475.2019. |
[20] | HAN L, SONG N, HU X, et al. Inhibition of RELM-beta prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline[J]. Life Sci, 2020, 246:117419. doi:10.1016/j.lfs.2020.117419. |
[21] | LAMBERT M, CAPUANO V, BOET A, et al. Characterization of Kcnk3-mutated rat,a novel model of pulmonary hypertension[J]. Circ Res, 2019, 125(7):678-695. doi:10.1161/CIRCRESAHA.119.314793. |
[22] | HAO X, LI H, ZHANG P, et al. Down-regulation of lncRNA Gas5 promotes hypoxia-induced pulmonary arterial smooth muscle cell proliferation by regulating KCNK3 expression[J]. Eur J Pharmacol, 2020, 889:173618. doi:10.1016/j.ejphar.2020.173618. |
[23] | HUMBERT M, KOVACS G, HOEPER M M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Heart J, 2023, 61(1):2200879. doi:10.1183/13993003.00879-2022. |
[24] | SITBON O, GOMBERG-MAITLAND M, GRANTON J, et al. Clinical trial design and new therapies for pulmonary arterial hypertension[J]. Eur Respir J, 2019, 53(1):1801908. doi:10.1183/13993003.01908-2018. |
[25] | RUOPP N F, COCKRILL B A. Diagnosis and treatment of pulmonary arterial hypertension:a review[J]. JAMA, 2022, 327(14):1379-1391. doi:10.1001/jama.2022.4402. |
[26] | PITRE T, SU J, CUI S, et al. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network meta-analysis[J]. Eur Respir Rev, 2022, 31(165):220036. doi:10.1183/16000617.0036-2022. |
[27] | CHRISTOU H, KHALIL R A. Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies[J]. Am J Physiol Heart Circ Physiol, 2022, 322(5):H702-H724. doi:10.1152/ajpheart.00021.2022. |
[28] | LE RIBEUZ H, CAPUANO V, GIRERD B, et al. Implication of potassium channels in the pathophysiology of pulmonary arterial hypertension[J]. Biomolecules, 2020, 10(9):1261. doi:10.3390/biom10091261. |
[29] | CUNNINGHAM K P, CLAPP L H, MATHIE A, et al. The prostacyclin analogue,treprostinil,used in the treatment of pulmonary arterial hypertension,is a potent antagonist of TREK-1 and TREK-2 potassium channels[J]. Front Pharmacol, 2021, 12:705421. doi:10.3389/fphar.2021.705421. |
[30] | TIAN H, FAN F, GENG J, et al. Beraprost upregulates KV channel expression and function via EP4 receptor in pulmonary artery smooth muscle cells obtained from rats with hypoxia-induced pulmonary hypertension[J]. J Vasc Res, 2019, 56(4):204-214. doi:10.1159/000500424. |
[31] | MONDÉJAR-PARREÑO G, MORAL-SANZ J, BARREIRA B, et al. Activation of Kv7 channels as a novel mechanism for NO/cGMP-induced pulmonary vasodilation[J]. Br J Pharmacol, 2019, 176(13):2131-2145. doi:10.1111/bph.14662. |
[32] | BOCK C, LINK A. How to replace the lost keys? Strategies toward safer KV7 channel openers[J]. Future Med Chem, 2019. doi:10.4155/fmc-2018-0350. |
[33] | RASHID J, NOZIK-GRAYCK E, MCMURTRY IF, et al. Inhaled combination of sildenafil and rosiglitazone improves pulmonary hemodynamics,cardiac function,and arterial remodeling[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316:119-130. doi:10.1152/ajplung.00381.2018. |
[34] | HE M, CUI T, CAI Q, et al. Iptakalim ameliorates hypoxia-impaired human endothelial colony-forming cells proliferation,migration,and angiogenesis via Akt/eNOS pathways[J]. Pulm Circ, 2019, 9(3):2045894019875417. doi:10.1177/2045894019875417. |
[35] | 王江涛, 马博华, 沈会华, 等. 常山酮对高原肺动脉高压模型大鼠心肺功能的影响及其机制研究[J]. 天津医药, 2023, 51(1):41-44. |
WANG J T, MA B H, SHEN H H, et al. The effect of halofuginone on cardiopulmonary function and its mechanism in rats with high-altitude pulmonary hypertension[J]. Tianjin Med J, 2023, 51(1):41-44. doi:10.11958/20220965. | |
[36] | JAIN P P, ZHAO T, XIONG M, et al. Halofuginone,a promising drug for treatment of pulmonary hypertension[J]. Br J Pharmacol, 2021, 178(17):3373-3394. doi:10.1111/bph.15442. |
[37] | FAN F, ZOU Y, WANG Y, et al. Sanguinarine reverses pulmonary vascular remolding of hypoxia-induced PH via survivin/HIF1α-attenuating Kv channels[J]. Front Pharmacol, 2021, 12:768513. doi:10.3389/fphar.2021.768513. |
[38] | FUSI F, TREZZA A, TRAMAGLINO M, et al. The beneficial health effects of flavonoids on the cardiovascular system:focus on K(+) channels[J]. Pharmacol Res, 2020, 152:104625. doi:10.1016/j.phrs.2019.104625. |
[39] | DING L, JIA C, ZHANG Y, et al. Baicalin relaxes vascular smooth muscle and lowers blood pressure in spontaneously hypertensive rats[J]. Biomed Pharmacother, 2019, 111:325-330. doi:10.1016/j.biopha.2018.12.086. |
[40] | LI W, DONG M, GUO P, et al. Luteolin-induced coronary arterial relaxation involves activation of the myocyte voltage-gated K(+) channels and inward rectifier K(+) channels[J]. Life Sci, 2019, 221:233-240. doi:10.1016/j.lfs.2019.02.028. |
[41] | ZHENG L, LIU M, WEI M, et al. Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents[J]. Respir Physiol Neurobiol, 2015, 205:120-128. doi:10.1016/j.resp.2014.09.025. |
[1] | WU Caixin, YAN Yan, DENG Yuanlin, DU Yamin, YANG Zhenwen, PAN Qing, YANG Fan. The value of cardiac magnetic resonance in evaluating severe pulmonary hypertension associated with connective tissue disease [J]. Tianjin Medical Journal, 2024, 52(7): 691-694. |
[2] | WANG Hui, PAN Qing, WANG Zhouming, ZHANG Na, YANG Zhenwen, WEI Wei. Analysis of clinical features of mixed connective tissue disease associated with pulmonary arterial hypertension [J]. Tianjin Medical Journal, 2024, 52(7): 701-703. |
[3] | YANG Rui, WEI Qiong, SUN Yikun, ZHAO Mengzhu, CHENG Xu, LIU Menghua, ZHANG Dongmei. Effects of hypoxia H9c2 exosome on proliferation,migration and tube formation of HUVEC [J]. Tianjin Medical Journal, 2024, 52(7): 714-719. |
[4] | WANG Yue, QUAN Xingmiao, WANG Yu, SONG Chunxia, SHAO Yue, XU Liwei. Influence of Yiqi Shengqing recipe on neuron pyroptosis in ischemic stroke rats by regulating HIF-1α/NLRP3 signal pathway [J]. Tianjin Medical Journal, 2024, 52(4): 350-355. |
[5] | YAN Haifeng, WU Xiaohong, LIN Yuqing, HUO Kaiming, WANG Yingying. Effect of miR-582-5p targeting regulation of FOXO1 on neuronal damage in neonatal rats with hypoxic ischemic encephalopathy [J]. Tianjin Medical Journal, 2024, 52(4): 356-361. |
[6] | MIAO Chunbo, XU Yingchun, CHANG Yifang. Phlorizin allevistes oxidative stress and apoptosis of rat cardiac myocytes H9C2 induced by hypoxia/reoxygenation by down-regulating miR-125a-5p [J]. Tianjin Medical Journal, 2024, 52(12): 1233-1238. |
[7] | ZHENG Yaru, HUANG Yibin, SU Xiaoping, ZHANG Yanjun. Effects of quercetin on periodontal tissue angiogenesis during orthodontic tooth movement in rats by regulating HIF-1α/VEGF signaling pathway [J]. Tianjin Medical Journal, 2024, 52(12): 1251-1255. |
[8] | XUE Li, HAN Hong, ZHANG Li. Effects of Morin on neuronal apoptosis in cerebral ischemia-reperfusion rats by inhibiting TXNIP/NLRP3/Caspase-1 signaling pathway [J]. Tianjin Medical Journal, 2023, 51(5): 487-490. |
[9] | ZHANG Yun, LI Ke, BU Wangzhen. Effect of electroacupuncture on the activation of microglia in rats with hypoxia-ischemia brain damage by regulating Nrf2/HO-1 pathway [J]. Tianjin Medical Journal, 2023, 51(2): 149-154. |
[10] | SONG Zhengfeng, LIU Yuanyuan, QI Peng, TAN Xianxing, MA Lei. The effect and mechanism of miR-15b gene interference on cerebral ischemia-reperfusion injury [J]. Tianjin Medical Journal, 2023, 51(1): 24-29. |
[11] | CHEN Xiaoling, CHEN Xiaojun, YANG Lixia, XING Shuwang, QIU Chengying. Changes and clinical significance of serum sLOX-1 and VILIP-1 in neonates with hypoxic ischemic encephalopathy [J]. Tianjin Medical Journal, 2022, 50(3): 310-314. |
[12] | GUO Yujing, HU Ying, LONG Qifu, XU Yuzhen, LI Jidong, YONG Sheng. Effects of hypoxia exposure on proliferation and apoptosis of mouse spleen lymphocytes [J]. Tianjin Medical Journal, 2022, 50(10): 1014-1019. |
[13] | HE Yuan, LI Dong-sheng, LI Yue-hong. Clinical observation of Danhong injection in the treatment of chronic obstructive pulmonary disease with CKD and hypoxemia [J]. Tianjin Medical Journal, 2021, 49(7): 747-751. |
[14] | CHEN Hong-yan, SUN Xing-yu, LI Ya-ling, HE Jin-san, LIU Ling△. The expression and role of IKCa1 in endometrium during peri-implantation [J]. Tianjin Medical Journal, 2021, 49(5): 460-464. |
[15] | OUYANGXin, XUYou-hui, CHENMing-ren, XIAOAi-jiao△. Study on the mechanism of moxibustion in attenuating hypoxia-ischemic brain injury in neonatal mice [J]. Tianjin Medical Journal, 2021, 49(3): 248-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||