
Tianjin Medical Journal ›› 2026, Vol. 54 ›› Issue (1): 14-22.doi: 10.11958/20252534
• Experimental Research • Previous Articles Next Articles
LIU Kuizhi(
), XUAN Xuexi, ZHOU Peng, YUAN Xiaowei, ZHU Ziqiang△(
)
Received:2025-07-22
Revised:2025-09-21
Published:2026-01-15
Online:2026-01-19
Contact:
△ E-mail:LIU Kuizhi, XUAN Xuexi, ZHOU Peng, YUAN Xiaowei, ZHU Ziqiang. Effects of Zhigancao Decoction on atrial remodeling in atrial fibrillation rat model via modulating the miR-26b-5p/SMAD4 pathway[J]. Tianjin Medical Journal, 2026, 54(1): 14-22.
CLC Number:
| 基因名称 | 引物序列(5′→3′) | 产物大小/bp |
|---|---|---|
| miR-26b-5p | 上游:GCGCGTTCAAGTAATTCAGG | 116 |
| 下游:AGTGCAGGGTCCGAGGTATT | ||
| U6 | 上游:CTCGCTTCGGCAGCACA | 98 |
| 下游:AACGCTTCACGAATTTGCGT |
Tab.1 Primer sequence
| 基因名称 | 引物序列(5′→3′) | 产物大小/bp |
|---|---|---|
| miR-26b-5p | 上游:GCGCGTTCAAGTAATTCAGG | 116 |
| 下游:AGTGCAGGGTCCGAGGTATT | ||
| U6 | 上游:CTCGCTTCGGCAGCACA | 98 |
| 下游:AACGCTTCACGAATTTGCGT |
| 组别 | LVEF | LVESD/mm | ||
|---|---|---|---|---|
| 对照组 | 0.725±0.075 | 3.11±0.32 | ||
| AF组 | 0.481±0.049a | 7.38±0.75a | ||
| 维拉帕米组 | 0.683±0.070b | 4.11±0.44b | ||
| 炙甘草汤-L组 | 0.574±0.058b | 5.76±0.59b | ||
| 炙甘草汤-H组 | 0.705±0.071bc | 3.75±0.38bc | ||
| 炙甘草汤-H+anti-NC组 | 0.698±0.071 | 3.84±0.40 | ||
| 炙甘草汤-H+anti-miR-26b-5p组 | 0.582±0.059d | 5.61±0.58d | ||
| F | 34.884* | 154.484* | ||
| 组别 | LVEDD/mm | LVFS | ||
| 对照组 | 6.18±0.63 | 0.497±0.051 | ||
| AF组 | 9.94±1.05a | 0.258±0.028a | ||
| 维拉帕米组 | 6.54±0.68b | 0.372±0.040b | ||
| 炙甘草汤-L组 | 8.36±0.87b | 0.310±0.032b | ||
| 炙甘草汤-H组 | 6.37±0.65bc | 0.411±0.043bc | ||
| 炙甘草汤-H+anti-NC组 | 6.41±0.66 | 0.401±0.041 | ||
| 炙甘草汤-H+anti-miR-26b-5p组 | 8.19±0.84d | 0.315±0.033d | ||
| F | 60.126* | 74.737* | ||
Tab.2 Comparison of cardiac function between different groups of rats (n=18,$\bar{x}±s$)
| 组别 | LVEF | LVESD/mm | ||
|---|---|---|---|---|
| 对照组 | 0.725±0.075 | 3.11±0.32 | ||
| AF组 | 0.481±0.049a | 7.38±0.75a | ||
| 维拉帕米组 | 0.683±0.070b | 4.11±0.44b | ||
| 炙甘草汤-L组 | 0.574±0.058b | 5.76±0.59b | ||
| 炙甘草汤-H组 | 0.705±0.071bc | 3.75±0.38bc | ||
| 炙甘草汤-H+anti-NC组 | 0.698±0.071 | 3.84±0.40 | ||
| 炙甘草汤-H+anti-miR-26b-5p组 | 0.582±0.059d | 5.61±0.58d | ||
| F | 34.884* | 154.484* | ||
| 组别 | LVEDD/mm | LVFS | ||
| 对照组 | 6.18±0.63 | 0.497±0.051 | ||
| AF组 | 9.94±1.05a | 0.258±0.028a | ||
| 维拉帕米组 | 6.54±0.68b | 0.372±0.040b | ||
| 炙甘草汤-L组 | 8.36±0.87b | 0.310±0.032b | ||
| 炙甘草汤-H组 | 6.37±0.65bc | 0.411±0.043bc | ||
| 炙甘草汤-H+anti-NC组 | 6.41±0.66 | 0.401±0.041 | ||
| 炙甘草汤-H+anti-miR-26b-5p组 | 8.19±0.84d | 0.315±0.033d | ||
| F | 60.126* | 74.737* | ||
| 组别 | AF诱发率/% | 胶原面积百分数/% |
|---|---|---|
| 对照组 | 24.00±2.06 | 0.64±0.08 |
| AF组 | 36.59±2.81a | 5.11±0.54a |
| 维拉帕米组 | 28.16±1.95b | 1.23±0.15b |
| 炙甘草汤-L组 | 32.25±2.47b | 2.76±0.31b |
| 炙甘草汤-H组 | 25.34±1.72bc | 0.87±0.11bc |
| 炙甘草汤-H+anti-NC组 | 26.05±1.79 | 0.92±0.12 |
| 炙甘草汤-H+anti-miR-26b-5p组 | 31.92±2.28d | 2.65±0.29d |
| F | 26.039* | 206.513* |
Tab.3 Comparison of AF induction rate and collagen area percentage between different groups of rats (n=6,$\bar{x}±s$)
| 组别 | AF诱发率/% | 胶原面积百分数/% |
|---|---|---|
| 对照组 | 24.00±2.06 | 0.64±0.08 |
| AF组 | 36.59±2.81a | 5.11±0.54a |
| 维拉帕米组 | 28.16±1.95b | 1.23±0.15b |
| 炙甘草汤-L组 | 32.25±2.47b | 2.76±0.31b |
| 炙甘草汤-H组 | 25.34±1.72bc | 0.87±0.11bc |
| 炙甘草汤-H+anti-NC组 | 26.05±1.79 | 0.92±0.12 |
| 炙甘草汤-H+anti-miR-26b-5p组 | 31.92±2.28d | 2.65±0.29d |
| F | 26.039* | 206.513* |
| 组别 | 细胞凋亡率/% | BAX/β-actin | C-caspase3/β-actin |
|---|---|---|---|
| 对照组 | 3.11±0.37 | 0.33±0.04 | 0.28±0.04 |
| AF组 | 29.84±3.15a | 0.89±0.10a | 0.83±0.09a |
| 维拉帕米组 | 10.17±1.21b | 0.42±0.05b | 0.35±0.05b |
| 炙甘草汤-L组 | 20.49±2.24b | 0.69±0.08b | 0.63±0.07b |
| 炙甘草汤-H组 | 7.65±0.83bc | 0.37±0.05bc | 0.31±0.04bc |
| 炙甘草汤-H+anti-NC组 | 8.33±0.89 | 0.39±0.05 | 0.32±0.04 |
| 炙甘草汤-H+ anti-miR-26b-5p组 | 16.21±1.75d | 0.65±0.08d | 0.59±0.07d |
| F | 166.978* | 58.539* | 74.484* |
Tab.4 Comparison of cardiomyocyte apoptosis in atrial tissue between different groups of rats (n=6,$\bar{x}±s$)
| 组别 | 细胞凋亡率/% | BAX/β-actin | C-caspase3/β-actin |
|---|---|---|---|
| 对照组 | 3.11±0.37 | 0.33±0.04 | 0.28±0.04 |
| AF组 | 29.84±3.15a | 0.89±0.10a | 0.83±0.09a |
| 维拉帕米组 | 10.17±1.21b | 0.42±0.05b | 0.35±0.05b |
| 炙甘草汤-L组 | 20.49±2.24b | 0.69±0.08b | 0.63±0.07b |
| 炙甘草汤-H组 | 7.65±0.83bc | 0.37±0.05bc | 0.31±0.04bc |
| 炙甘草汤-H+anti-NC组 | 8.33±0.89 | 0.39±0.05 | 0.32±0.04 |
| 炙甘草汤-H+ anti-miR-26b-5p组 | 16.21±1.75d | 0.65±0.08d | 0.59±0.07d |
| F | 166.978* | 58.539* | 74.484* |
| 组别 | ColⅠ | α-SMA |
|---|---|---|
| 对照组 | 0.25±0.04 | 0.20±0.03 |
| AF组 | 0.83±0.09a | 0.76±0.09a |
| 维拉帕米组 | 0.31±0.04b | 0.26±0.04b |
| 炙甘草汤-L组 | 0.64±0.07b | 0.57±0.07b |
| 炙甘草汤-H组 | 0.28±0.04bc | 0.23±0.03bc |
| 炙甘草汤-H+anti-NC组 | 0.30±0.04 | 0.24±0.03 |
| 炙甘草汤-H+anti-miR-26b-5p组 | 0.59±0.07d | 0.52±0.06d |
| F | 89.514* | 96.105* |
Tab.5 Comparison of mean optical density values of ColⅠand α-SMA in atrial tissue between different groups of rats (n=6,$\bar{x}±s$)
| 组别 | ColⅠ | α-SMA |
|---|---|---|
| 对照组 | 0.25±0.04 | 0.20±0.03 |
| AF组 | 0.83±0.09a | 0.76±0.09a |
| 维拉帕米组 | 0.31±0.04b | 0.26±0.04b |
| 炙甘草汤-L组 | 0.64±0.07b | 0.57±0.07b |
| 炙甘草汤-H组 | 0.28±0.04bc | 0.23±0.03bc |
| 炙甘草汤-H+anti-NC组 | 0.30±0.04 | 0.24±0.03 |
| 炙甘草汤-H+anti-miR-26b-5p组 | 0.59±0.07d | 0.52±0.06d |
| F | 89.514* | 96.105* |
| 组别 | miR-26b-5p | SMAD4/ β-actin |
|---|---|---|
| 对照组 | 0.96±0.11 | 0.37±0.05 |
| AF组 | 0.42±0.05a | 0.88±0.10a |
| 维拉帕米组 | 0.85±0.09b | 0.45±0.06b |
| 炙甘草汤-L组 | 0.60±0.07b | 0.69±0.08b |
| 炙甘草汤-H组 | 0.92±0.10bc | 0.41±0.05bc |
| 炙甘草汤-H+anti-NC组 | 0.90±0.10 | 0.42±0.05 |
| 炙甘草汤-H+anti-miR-26b-5p组 | 0.64±0.07d | 0.67±0.08d |
| F | 33.170* | 45.752* |
Tab.6 Comparison of miR-26b-5p levels and SMAD4 expression in atrial tissue between different groups of rats (n=6,$\bar{x}±s$)
| 组别 | miR-26b-5p | SMAD4/ β-actin |
|---|---|---|
| 对照组 | 0.96±0.11 | 0.37±0.05 |
| AF组 | 0.42±0.05a | 0.88±0.10a |
| 维拉帕米组 | 0.85±0.09b | 0.45±0.06b |
| 炙甘草汤-L组 | 0.60±0.07b | 0.69±0.08b |
| 炙甘草汤-H组 | 0.92±0.10bc | 0.41±0.05bc |
| 炙甘草汤-H+anti-NC组 | 0.90±0.10 | 0.42±0.05 |
| 炙甘草汤-H+anti-miR-26b-5p组 | 0.64±0.07d | 0.67±0.08d |
| F | 33.170* | 45.752* |
| 组别 | WT-SMAD4 | MUT-SMAD4 |
|---|---|---|
| miR-NC组 | 0.99±0.11 | 1.02±0.11 |
| miR-26b-5p mimic组 | 0.56±0.07 | 1.00±0.11 |
| t | 8.078* | 0.315 |
Tab.7 Comparison of relative luciferase activity between the two groups (n=6,$\bar{x}±s$)
| 组别 | WT-SMAD4 | MUT-SMAD4 |
|---|---|---|
| miR-NC组 | 0.99±0.11 | 1.02±0.11 |
| miR-26b-5p mimic组 | 0.56±0.07 | 1.00±0.11 |
| t | 8.078* | 0.315 |
| [1] | ZHANG J, JOHNSEN S P, GUO Y, et al. Epidemiology of atrial fibrillation:geographic/ecological risk factors,age,sex,genetics[J]. Card Electrophysiol Clin, 2021, 13(1):1-23. doi:10.1016/j.ccep.2020.10.010. |
| [2] | SHI S, TANG Y, ZHAO Q, et al. Prevalence and risk of atrial fibrillation in China:a national cross-sectional epidemiological study[J]. Lancet Reg Health West Pac, 2022,23:100439. doi:10.1016/j.lanwpc.2022.100439. |
| [3] | BAHNSON T D, GICZEWSKA A, MARK D B, et al. Association between age and outcomes of catheter ablation versus medical therapy for atrial fibrillation:results from the CABANA trial[J]. Circulation, 2022, 145(11):796-804. doi:10.1161/CIRCULATIONAHA.121.055297. |
| [4] | SALEH K, HALDAR S. Atrial fibrillation:a contemporary update[J]. Clin Med(Lond), 2023, 23(5):437-441. doi:10.7861/clinmed.2023-23.5.Cardio2. |
| [5] | WANG H, JIANG W, HU Y, et al. Quercetin improves atrial fibrillation through inhibiting TGF-β/Smads pathway via promoting miR-135b expression[J]. Phytomedicine, 2021,93:153774. doi:10.1016/j.phymed.2021.153774. |
| [6] | WU N, ZHANG Y, ZENG Y, et al. Circular RNA hsa_circ_0000118 promotes atrial fibrosis by regulating the microRNA‑34a‑5p/Smad4 axis[J]. Mol Med Rep, 2025, 32(6):339. doi:10.3892/mmr.2025.13704. |
| [7] | DOÑATE PUERTAS R, ARORA R, ROME S, et al. Epigenetics in atrial fibrillation:a reappraisal[J]. Heart Rhythm, 2021, 18(5):824-832. doi:10.1016/j.hrthm.2021.01.007. |
| [8] | 丁莹, 王晶予, 汤天凤, 等. 微小RNA-26b-5p对缺血性心律失常大鼠心房肌细胞L型钙通道的影响[J]. 中华老年心脑血管病杂志, 2023, 25(10):1088-1092. |
| DING Y, WANG J Y, TANG T F, et al. Effects of miR-26b-5p on L-type calcium channel in atrial cardiomyocytes of ischemic arrhythmia rats[J]. Chin J Geriatr Heart Brain Vessel Dis, 2023, 25(10):1088-1092. doi:10.3969/j.issn.1009-0126.2023.10.019. | |
| [9] | 叶嘉豪, 胡志希, 钟森杰, 等. 基于网络药理学探讨炙甘草汤治疗心律失常的作用机制[J]. 世界中医药, 2022, 17(6):760-766. |
| YE J H, HU Z X, ZHONG S J, et al. Mechanism of Zhigancao Decoction in treatment of arrhythmia based on network pharmacology[J]. World Chin Med, 2022, 17(6):760-766. doi:10.3969/j.issn.1673-7202.2022.06.002. | |
| [10] | 赵帅, 宫丽鸿, 吴启华, 等. 化痰祛瘀方对心房颤动大鼠心房纤维化的实验研究[J]. 世界中医药, 2023, 18(8):1085-1090. |
| ZHAO S, GONG L H, WU Q H, et al. Experimental study of atrial fibrosis in rats with atrial fibrillation[J]. World Chin Med, 2023, 18(8):1085-1090. doi:10.3969/j.issn.1673-7202.2023.08.005. | |
| [11] | 中国医疗保健国际交流促进会急诊医学分会, 中华医学会急诊医学分会, 国家老年医学中心, 等. 急性心房颤动中国急诊管理指南(2024)[J]. 临床急诊杂志, 2024, 25(8):381-409. |
| Society of Emergency,China International Exchange and Promotive Association for Medical and Health Care, Chinese Society of Emergency, Chinese Medical Association, National Center of Gerontology, et al. Chinese clinical guidelines for the management of patients with acute atrial fibrillation in emergency department (2024)[J]. J Clin Emerg, 2024, 25(8):381-409. doi:10.13201/j.issn.1009-5918.2024.08.001. | |
| [12] | 谭珍妮, 吕春美, 邹海林. 丹曲林对心房颤动大鼠心肌纤维化及TGF-β1/Smad2信号通路的影响[J]. 中西医结合心脑血管病杂志, 2024, 22(4):632-639. |
| TAN Z N, LYU C M, ZOU H L. Effects of dantrolene on myocardial fibrosis and TGF-β1/Smad2 signaling pathway in rats with atrial fibrillation[J]. Chin J Integr Med on Cardio-Cerebrovas Dis, 2024, 22(4):632-639. doi:10.12102/j.issn.1672-1349.2024.04.009. | |
| [13] | 郑旭颖, 麻春杰, 陈永真, 等. 基于PI3K/Akt/mTOR信号通路探讨炙甘草汤抗大鼠MIRI致室速和室颤的作用机制[J]. 中国实验方剂学杂志, 2020, 26(17):1-8. |
| ZHENG X Y, MA C J, CHEN Y Z, et al. Based on PI3K/Akt/mTOR signaling pathway to explore mechanism of Zhigancao Tang against MIRI-induced ventricular tachycardia and ventricular fibrillation in rats[J]. Chin J Exp Tradit Med Formulae, 2020, 26(17):1-8. doi:10.13422/j.cnki.syfjx.20201736. | |
| [14] | ESCUDERO-MARTÍNEZ I, MORALES-CABA L, SEGURA T. Atrial fibrillation and stroke:a review and new insights[J]. Trends Cardiovasc Med, 2023, 33(1):23-29. doi:10.1016/j.tcm.2021.12.001. |
| [15] | REDDY Y N V, BORLAUG B A, GERSH B J. Management of atrial fibrillation across the spectrum of heart failure with preserved and reduced ejection fraction[J]. Circulation, 2022, 146(4):339-357. doi:10.1161/CIRCULATIONAHA.122.057444. |
| [16] | LIPPI G, SANCHIS-GOMAR F, CERVELLIN G. Global epidemiology of atrial fibrillation:an increasing epidemic and public health challenge[J]. Int J Stroke, 2021, 16(2):217-221. doi:10.1177/1747493019897870. |
| [17] | HU Z, DING L, YAO Y. Atrial fibrillation:mechanism and clinical management[J]. Chin Med J(Engl), 2023, 136(22):2668-2676. doi:10.1097/CM9.0000000000002906. |
| [18] | 柴宇燕, 凌天佑, 盛慧球, 等. 基于络病理论解读炙甘草汤治疗心房颤动[J]. 中国心脏起搏与心电生理杂志, 2024, 38(6):397-401. |
| CHAI Y Y, LING T Y, SHENG H Q, et al. Interpretation of Zhigancao Decoction in the treatment of atrial fibrillation based on the theory of collateral diseaseatrial[J]. Chin J Card Pacing Electrophysiol, 2024, 38(6):397-401. doi:10.13333/j.cnki.cjcpe.2024.06.002. | |
| [19] | 任海云, 蔚蓁. 基于网络药理学与分子对接技术探究炙甘草汤抗心肌缺血再灌注损伤的作用机制[J]. 中西医结合心脑血管病杂志, 2024, 22(3):402-409. |
| REN H Y, WEI Z. The mechanism of anti-myocardial ischemia-reperfusion injury of Honey-fried Licorice Decoction based on network pharmacology and molecular docking[J]. Chin J Integr Med on Cardio-Cerebrovas Dis, 2024, 22(3):402-409. doi:10.12102/j.issn.1672-1349.2024.03.003. | |
| [20] | 朱雪, 周承志. LC-MS结合网络药理学探讨炙甘草汤抗快速性心律失常机制研究[J]. 医师在线, 2024, 14(4):3-9. |
| ZHU X, ZHOU C Z. Integrated LC-MS and network pharmacology reveal the mechanism of Zhigancao Decoction against tachyarrhythmias[J]. J Doctors Online, 2024, 14(4):3-9. doi:10.3969/j.issn.2095-7165.2024.04.001. | |
| [21] | SYGITOWICZ G, MACIEJAK-JASTRZĘBSKA A, SITKIEWICZ D. A review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation[J]. J Clin Med, 2021, 10(19):4430. doi:10.3390/jcm10194430. |
| [22] | 邢佳侬, 梁卓, 邢爱君, 等. LncRNA MIAT靶向调节miR-128-3p对心房颤动大鼠心室重构和心肌纤维化的影响[J]. 天津医药, 2022, 50(9):932-937. |
| XING J N, LIANG Z, XING A J, et al. Effects of lncRNA MIAT on ventricular remodeling and myocardial fibrosis in rats with atrial fibrillation through targeting regulation of miR-128-3p[J]. Tianjin Med J, 2022, 50(9):932-937. doi:10.11958/20220015. | |
| [23] | ZHENG J, ZHAO S, YANG Q, et al. Sympathetic activation promotes cardiomyocyte apoptosis in a rabbit susceptibility model of hyperthyroidism-induced atrial fibrillation via the p38 MAPK signaling pathway[J]. Crit Rev Eukaryot Gene Expr, 2023, 33(5):17-27. doi:10.1615/CritRevEukaryotGeneExpr.2023046625. |
| [24] | YI Y, TIANXIN Y, ZHANGCHI L, et al. Pinocembrin attenuates susceptibility to atrial fibrillation in rats with pulmonary arterial hypertension[J]. Eur J Pharmacol, 2023,960:176169. doi:10.1016/j.ejphar.2023.176169. |
| [25] | ZHANG L, LOU Q, ZHANG W, et al. CircCAMTA1 facilitates atrial fibrosis by regulating the miR-214-3p/TGFBR1 axis in atrial fibrillation[J]. J Mol Histol, 2023, 54(1):55-65. doi:10.1007/s10735-022-10110-9. |
| [26] | CONG X, ZHU X, ZHANG X, et al. Astragaloside IV inhibits angiotensin II-induced atrial fibrosis and atrial fibrillation by SIRT1/PGC-1α/FNDC5 pathway[J]. Heliyon, 2024, 10(10):e30984. doi:10.1016/j.heliyon.2024.e30984. |
| [27] | CHEN W, WU X, HU J, et al. The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2,COL1A1,CPT1A,FBP1,DGAT2,and SMAD7[J]. Cardiovasc Diabetol, 2024, 23(1):21. doi:10.1186/s12933-024-02119-z. |
| [28] | JIA X, SHAO W, TIAN S. Berberine alleviates myocardial ischemia-reperfusion injury by inhibiting inflammatory response and oxidative stress:the key function of miR-26b-5p-mediated PTGS2/MAPK signal transduction[J]. Pharm Biol, 2022, 60(1):652-663. doi:10.1080/13880209.2022.2048029. |
| [29] | XU P, YI Y, XIONG L, et al. Oncostatin M/oncostatin M receptor signal induces radiation-induced heart fibrosis by regulating SMAD4 in fibroblast[J]. Int J Radiat Oncol Biol Phys, 2024, 118(1):203-217. doi:10.1016/j.ijrobp.2023.07.033. |
| [30] | SHI Y, LIU C, XIONG S, et al. Ling-Gui-Qi-Hua formula alleviates left ventricular myocardial fibrosis in rats with heart failure with preserved ejection fraction by blocking the transforming growth factor-β1/Smads signaling pathway[J]. J Ethnopharmacol, 2023,317:116849. doi:10.1016/j.jep.2023.116849. |
| [31] | WANG H, LIAN X, GAO W, et al. Long noncoding RNA H19 suppresses cardiac hypertrophy through the microRNA-145-3p/SMAD4 axis[J]. Bioengineered, 2022, 13(2):3826-3839. doi:10.1080/21655979.2021.2017564. |
| [32] | WANG W, LI Y, ZHANG C, et al. Small extracellular vesicles from young healthy human plasma inhibit cardiac fibrosis after myocardial infarction via miR-664a-3p targeting SMAD4[J]. Int J Nanomedicine, 2025, 20:557-579. doi:10.2147/IJN.S488368. |
| [33] | MARQUEZ M E, SERNBO S, PAYQUE E, et al. TGF-β/SMAD pathway is modulated by mir-26b-5p:another piece in the puzzle of chronic lymphocytic leukemia progression[J]. Cancers(Basel), 2022, 14(7):1676. doi:10.3390/cancers14071676. |
| [1] | LI Wenxiu, ZHU Zhenyu, CHAI Hui, ZHENG Xiaoxuan, LU Jing, LI Runqin. Advances in the mechanism of left auricular thrombosis in patients with atrial fibrillation [J]. Tianjin Medical Journal, 2025, 53(9): 1005-1008. |
| [2] | CHEN Miaomiao, ZHANG Yazheng, ZHAO Fang, YANG Liheng, JIAO Lina, ZHAO Xiaoyun. Multi-omics analysis of the causal relationship and mediation mechanisms between obstructive sleep apnea and atrial fibrillation [J]. Tianjin Medical Journal, 2025, 53(9): 946-951. |
| [3] | FENG Xuewu, LI Jingjuan, KUAI Wanjun. Compliance analysis of new oral anticoagulants in elderly patients with nonvalvular atrial fibrillation [J]. Tianjin Medical Journal, 2025, 53(8): 884-888. |
| [4] | SUN Lusheng, ZHANG Lifang, GAO Junjie, TANG Xiuying. Relationship between CT quantitative left heart structure parameters and recurrence of hypertrophic cardiomyopathy complicated with atrial fibrillation after radiofrequency ablation [J]. Tianjin Medical Journal, 2025, 53(5): 533-536. |
| [5] | GAO Pan, XIE Bingxin, ZHOU Zandong, LIU Tong. Promoting effect of circulating FGF23 on atrial fibrosis in chronic kidney disease [J]. Tianjin Medical Journal, 2024, 52(9): 917-923. |
| [6] | ZHANG Minglong, FANG Yuanyuan, SUI Xiaopeng, CHEN Xinxin, LI Liudong, WANG Haitao. Relationship between left ventricular hypertrophy diagnosed by Peguero-Lo-Presti index and recurrence after radiofrequency catheter ablation of paroxysmal atrial fibrillation [J]. Tianjin Medical Journal, 2024, 52(2): 210-214. |
| [7] | HUO Liwei, LIU Jun, ZHENG Binbin, BI Xuena. Predictive value of serum FGF-23 in recurrence of patients with atrial fibrillation after radiofrequency ablation [J]. Tianjin Medical Journal, 2023, 51(1): 74-77. |
| [8] | XING Jianong, LIANG Zhuo, XING Aijun, LIU Junlan, PENG Hongchao, ZHANG Tianhua, ZHANG Chunlai. Effects of lncRNA MIAT on ventricular remodeling and myocardial fibrosis in rats with atrial fibrillation through targeting regulation of miR-128-3p [J]. Tianjin Medical Journal, 2022, 50(9): 932-937. |
| [9] | HE Hongmei, SUN Jian, WANG Huanhuan, MA Shujing, ZHANG Haiyan, ZOU Yu'an, XUE Qian, SONG Aixia. Risk factors for vascular dementia in patients with nonvalvular atrial fibrillation: a case-control study [J]. Tianjin Medical Journal, 2022, 50(8): 840-843. |
| [10] | ZHANG Xuteng, LIU Fang, CHEN Jun, LIU Xiaomeng, JIN Le, GAO Hongmei△. Research progress of PI3K/AKT signaling pathway in atrial fibrillation [J]. Tianjin Medical Journal, 2022, 50(5): 556-560. |
| [11] | HUO Ning, ZHAN Xiaoping, ZHOU Mengzhu, ZHANG Yue, LIANG Xue, LI Guangping, LIU Changle. Effects of glyburide on atrial remodeling and atrial fibrillation induction in diabetic rats [J]. Tianjin Medical Journal, 2022, 50(3): 253-258. |
| [12] | LU Jie, ZHANG Xin, WANG Tao, YANG Ning. Effects of circRNAs on atrial fibrillation and its mechanism [J]. Tianjin Medical Journal, 2022, 50(3): 333-336. |
| [13] | LI Rui-ling, ZHAO Zhi-qiang△. Research progress of relaxin in atrial fibrillation [J]. Tianjin Medical Journal, 2021, 49(4): 441-444. |
| [14] | FENG Hui-qiong, DONG Feng, MENG Xiang-jun, NIU Wen-liang, XI Fu-qiang, WANG Wei. Predictive value of serum pentraxin-3 combined with CHA2DS2-VASc score for cerebral infarction in patients with obstructive sleep apnea hypopnea syndrome and atrial fibrillation [J]. Tianjin Medical Journal, 2021, 49(12): 1324-1327. |
| [15] | SHAO Qing-miao, ZHANG Tao, LIU Tong, LI Guang-ping . Research progress of SGLT2 inhibitor in the occurrence of atrial fibrillation [J]. Tianjin Medical Journal, 2021, 49(10): 1116-1120. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||