Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (11): 1131-1136.doi: 10.11958/20240680
• Cell and Molecular Biology • Previous Articles Next Articles
ZHANG Guiting1(), HE Chao2,△(
)
Received:
2024-05-29
Revised:
2024-07-10
Published:
2024-11-15
Online:
2024-11-12
Contact:
△E-mail:15952853808@163.com
ZHANG Guiting, HE Chao. Mechanism of oxLDL/β2GPⅠ/aβ2GPⅠ complex promoting the angiogenesis in vascular endothelial cells through TLR4//MyD88/NF-κB signaling pathway[J]. Tianjin Medical Journal, 2024, 52(11): 1131-1136.
CLC Number:
基因名称 | 引物序列(5'→3') | 产物大 小/bp |
---|---|---|
VEGF | 上游:AGCTTCGTGTCCTGTATGGC | 138 |
下游:TTTCTGGCCACGTCCAGTTT | ||
VE-cadherin | 上游:CCCACTATCCGATACGAATACC | 149 |
下游:ATCCACATCTAGGACGTTGATG | ||
MMP-2 | 上游:TCAAGTTCCCCGGCGATG | 225 |
下游:AGTTGGCCACATCTGGGTTG | ||
MMP-9 | 上游:CAAAGACCTGAAAACCTCCAAC | 168 |
下游:GACTGCTTCTCTCCCATCATC | ||
β-actin | 上游:GCTTGCGGCATCCACGAGAC | 82 |
下游:CGGTGTTGGCATACAGATCCTTACG |
Tab.1 Sequences of qPCR primers
基因名称 | 引物序列(5'→3') | 产物大 小/bp |
---|---|---|
VEGF | 上游:AGCTTCGTGTCCTGTATGGC | 138 |
下游:TTTCTGGCCACGTCCAGTTT | ||
VE-cadherin | 上游:CCCACTATCCGATACGAATACC | 149 |
下游:ATCCACATCTAGGACGTTGATG | ||
MMP-2 | 上游:TCAAGTTCCCCGGCGATG | 225 |
下游:AGTTGGCCACATCTGGGTTG | ||
MMP-9 | 上游:CAAAGACCTGAAAACCTCCAAC | 168 |
下游:GACTGCTTCTCTCCCATCATC | ||
β-actin | 上游:GCTTGCGGCATCCACGAGAC | 82 |
下游:CGGTGTTGGCATACAGATCCTTACG |
组别 | 0 h | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|---|
对照组 | 1.00±0.05 | 1.43±0.14 | 1.81±0.32 | 4.15±0.22 | 5.28±0.34 |
oxLDL组 | 0.85±0.42 | 1.60±0.14 | 2.70±0.26 | 4.17±0.16 | 5.47±0.18 |
oxLDL/β2GPⅠ/aβ2GPⅠ组 | 1.05±0.03 | 1.29±0.18b | 2.40±0.22a | 3.78±0.22ab | 5.54±0.42 |
F | 0.870 | 4.945* | 14.040** | 6.025* | 0.858 |
Tab.2 Comparison of HUVEC cell proliferation at different time points between three groups
组别 | 0 h | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|---|
对照组 | 1.00±0.05 | 1.43±0.14 | 1.81±0.32 | 4.15±0.22 | 5.28±0.34 |
oxLDL组 | 0.85±0.42 | 1.60±0.14 | 2.70±0.26 | 4.17±0.16 | 5.47±0.18 |
oxLDL/β2GPⅠ/aβ2GPⅠ组 | 1.05±0.03 | 1.29±0.18b | 2.40±0.22a | 3.78±0.22ab | 5.54±0.42 |
F | 0.870 | 4.945* | 14.040** | 6.025* | 0.858 |
组别 | 迁移率/% | 侵袭细胞数量/个 | 管腔节点/% |
---|---|---|---|
对照组 | 100.00±20.78 | 65.33±18.90 | 100.00±16.33 |
oxLDL组 | 168.70±85.09 | 173.70±16.50 | 231.50±55.22 |
oxLDL/β2GPⅠ/ aβ2GPⅠ组 | 421.80±83.91ab | 224.70±11.68ab | 369.60±65.47a |
VEGF组 | 355.00±70.66ab | 192.00±14.73a | 392.90±59.86ab |
F | 14.030** | 58.160** | 19.800** |
Tab.3 Comparison of migration, invasion and tube formation between four groups of HUVEC cells
组别 | 迁移率/% | 侵袭细胞数量/个 | 管腔节点/% |
---|---|---|---|
对照组 | 100.00±20.78 | 65.33±18.90 | 100.00±16.33 |
oxLDL组 | 168.70±85.09 | 173.70±16.50 | 231.50±55.22 |
oxLDL/β2GPⅠ/ aβ2GPⅠ组 | 421.80±83.91ab | 224.70±11.68ab | 369.60±65.47a |
VEGF组 | 355.00±70.66ab | 192.00±14.73a | 392.90±59.86ab |
F | 14.030** | 58.160** | 19.800** |
组别 | VEGF | VE-cadherin | MMP-2 | MMP-9 |
---|---|---|---|---|
对照组 | 1.00±0.05 | 1.00±0.30 | 1.00±0.03 | 1.00±0.12 |
oxLDL组 | 1.20±0.22 | 3.77±0.36 | 1.32±0.35 | 2.07±0.16 |
oxLDL/β2GPⅠ/ aβ2GPⅠ组 | 1.79±0.46a | 4.71±0.31ab | 2.41±0.46ab | 2.21±0.43a |
F | 7.587* | 140.900** | 19.030** | 23.150** |
Tab.4 Comparison of mRNA expression levels of VEGF, VE-cadherin, MMP-2 and MMP-9 in HUVEC between three groups
组别 | VEGF | VE-cadherin | MMP-2 | MMP-9 |
---|---|---|---|---|
对照组 | 1.00±0.05 | 1.00±0.30 | 1.00±0.03 | 1.00±0.12 |
oxLDL组 | 1.20±0.22 | 3.77±0.36 | 1.32±0.35 | 2.07±0.16 |
oxLDL/β2GPⅠ/ aβ2GPⅠ组 | 1.79±0.46a | 4.71±0.31ab | 2.41±0.46ab | 2.21±0.43a |
F | 7.587* | 140.900** | 19.030** | 23.150** |
组别 | TLR4 | MyD88 | p-NF-κB p65/NF-κB p65 |
---|---|---|---|
对照组 | 1.00±0.14 | 1.00±0.18 | 1.00±0.13 |
oxLDL/β2GPⅠ/ aβ2GPⅠ组 | 1.62±0.32 | 2.29±0.45 | 1.86±0.23 |
t | 3.088* | 4.570* | 5.708** |
Tab.5 Comparison of protein expression levels of TLR4, MyD88, p-NF-κB p65 in HUVEC between two groups
组别 | TLR4 | MyD88 | p-NF-κB p65/NF-κB p65 |
---|---|---|---|
对照组 | 1.00±0.14 | 1.00±0.18 | 1.00±0.13 |
oxLDL/β2GPⅠ/ aβ2GPⅠ组 | 1.62±0.32 | 2.29±0.45 | 1.86±0.23 |
t | 3.088* | 4.570* | 5.708** |
[1] | TEKTONIDOU M G. Cardiovascular disease risk in antiphospholipid syndrome:thrombo-inflammation and atherothrombosis[J]. J Autoimmun, 2022,128:102813. doi:10.1016/j.jaut.2022.102813. |
[2] | SHIH Y T, WEI S Y, CHEN J H, et al. Vinculin phosphorylation impairs vascular endothelial junctions promoting atherosclerosis[J]. Eur Heart J, 2023, 44(4):304-318. doi:10.1093/eurheartj/ehac647. |
[3] | CHEN J, LI K, SHAO J, et al. Irisin suppresses nicotine-mediated atherosclerosis by attenuating endothelial cell migration,proliferation,cell cycle arrest,and cell senescence[J]. Front Cardiovasc Med, 2022,9:851603. doi:10.3389/fcvm.2022.851603. |
[4] | SIKLOVA M, KOC M, ROSSMEISLOVÁ L, et al. Serum oxLDL-β2GPI complex reflects metabolic syndrome and inflammation in adipose tissue in obese[J]. Int J Obes (Lond), 2018, 42(3):405-411. doi:10.1038/ijo.2017.260. |
[5] | FROSTEGÅRD J. Systemic lupus erythematosus and cardiovascular disease[J]. J Intern Med, 2023, 293(1):48-62. doi:10.1111/joim.13557. |
[6] | ZHANG G, CAI Q, ZHOU H, et al. OxLDL/β2GPI/anti-β2GPI Ab complex induces inflammatory activation via the TLR4/NF‑κB pathway in HUVECs[J]. Mol Med Rep, 2021, 23(2):148. doi:10.3892/mmr.2020.11787. |
[7] | XU S, GE Y, WANG X, et al. Circ-USP9X interacts with EIF4A3 to promote endothelial cell pyroptosis by regulating GSDMD stability in atherosclerosis[J]. Clin Exp Hypertens, 2023, 45(1):2186319. doi:10.1080/10641963.2023.2186319. |
[8] | AHMAD A, NAWAZ M I. Molecular mechanism of VEGF and its role in pathological angiogenesis[J]. J Cell Biochem, 2022, 123(12):1938-1965. doi:10.1002/jcb.3034. |
[9] | WANG X, SHEN Y, SHANG M, et al. Endothelial mechanobiology in atherosclerosis[J]. Cardiovasc Res, 2023, 119(8):1656-1675. doi:10.1093/cvr/cvad076. |
[10] | PATSOURAS M, ALEXOPOULOU E, FOUTADAKIS S, et al. Antiphospholipid antibodies induce proinflammatory and procoagulant pathways in endothelial cells[J]. J Transl Autoimmun, 2023,6:100202. doi:10.1016/j.jtauto.2023.100202. |
[11] | FANG J H, CHEN J Y, ZHEN J L, et al. Fructose metabolism in tumor endothelial cells promotes angiogenesis by activating AMPK signaling and mitochondrial respiration[J]. Cancer Res, 2023, 83(8):1249-1263. doi:10.1158/0008-5472. |
[12] | CUI E, KERSCHE G, GRUBIC N, et al. Effect of pharmacologic anti-atherosclerotic therapy on carotid intraplaque neovascularization:a systematic review[J]. J Clin Lipidol, 2023, 17(3):315-326. doi:10.1016/j.jacl.2023.04.009. |
[13] | FAVALORO E J, MOHAMMED S, VONG R, et al. Antiphospholipid antibody testing for anti-cardiolipin and anti-β2 glycoprotein I antibodies using chemiluminescence-based panels[J]. Methods Mol Biol, 2023,2663:297-314. doi:10.1007/978-1-0716-3175-1_19. |
[14] | AMES P, DI GIROLAMO G, D'ANDREA G, et al. Predictive value of oxidized low-density lipoprotein/β2-glycoprotein-Ⅰ complexes (oxLDL/β2GPI) in nonautoimmune atherothrombosis[J]. Clin Appl Thromb Hemost, 2018, 24(7):1050-1055. doi:10.1177/1076029618767752. |
[15] | ZHANG X, XIE Y, ZHOU H, et al. Involvement of TLR4 in oxidized LDL/β2GPI/anti-β2GPI-induced transformation of macrophages to foam cells[J]. J Atheroscler Thromb, 2014, 21(11):1140-1151. doi:10.5551/jat.24372. |
[16] | ZHANG G, HE C, WU Q, et al. Impaired autophagy induced by oxLDL/β2GPI/anti-β2GPI complex through PI3K/AKT/mTOR and eNOS signaling pathways contributes to endothelial cell dysfunction[J]. Oxid Med Cell Longev, 2021,2021:6662225. doi:10.1155/2021/6662225. |
[17] | DELGADO-BELLIDO D, OLIVER F J, VARGAS PADILLA M V, et al. VE-cadherin in cancer-associated angiogenesis:a deceptive strategy of blood vessel formation[J]. Int J Mol Sci, 2023, 24(11):9343. doi:10.3390/ijms24119343. |
[18] | VIMALRAJ S. A concise review of VEGF,PDGF,FGF,Notch,angiopoietin,and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions[J]. Int J Biol Macromol, 2022, 221:1428-1438. doi:10.1016/j.ijbiomac.2022.09.129. |
[19] | CAPOZZI A, MANGANELLI V, RIITANO G, et al. Advances in the pathophysiology of thrombosis in antiphospholipid syndrome:molecular mechanisms and signaling through lipid rafts[J]. J Clin Med, 2023, 12(3):891. doi:10.3390/jcm12030891. |
[1] | ZHANG Jinwei, WANG Yan, WANG Tong. Effects of miR-107 on proliferation, invasion and migration of CAL27 cells in oral squamous cell carcinoma [J]. Tianjin Medical Journal, 2024, 52(9): 897-899. |
[2] | MA Jiajia, ZHANG Yaping, YANG Bin, ZHAO Meiqi, JIANG Lu, HUANG Xiaoyu, FAN Luchang, WANG Fengmei. Mechanism study of ATOX1 promoting biological behavior of hepatocellular carcinoma cells through JAK2/STAT3 pathway [J]. Tianjin Medical Journal, 2024, 52(9): 907-912. |
[3] | JIA Weining, BAO Yaling, LEI Hui, YIN Xiaoning. The effect of prunella vulgaris extract on inflammatory response and peritoneal macrophages in septic mice [J]. Tianjin Medical Journal, 2024, 52(9): 930-935. |
[4] | LI Xin, LI Xue, WANG An. Effects of chrysotile on expression of Wnt5a, p16 and p21 in endothelial cells [J]. Tianjin Medical Journal, 2024, 52(7): 679-682. |
[5] | YANG Rui, WEI Qiong, SUN Yikun, ZHAO Mengzhu, CHENG Xu, LIU Menghua, ZHANG Dongmei. Effects of hypoxia H9c2 exosome on proliferation,migration and tube formation of HUVEC [J]. Tianjin Medical Journal, 2024, 52(7): 714-719. |
[6] | WU Bo, ZHU Zhuonong, ZHENG Lijuan, CHEN Junru. Effects of matrine on inflammation, oxidative stress and wound healing in atopic dermatitis [J]. Tianjin Medical Journal, 2024, 52(6): 566-571. |
[7] | LIU Danyang, LI Yongtao, ZHANG Haiyan, LI Lin, LIU Yang, SHEN Lei. Effect of breast cancer cell conditioned medium on biological behavior of bone marrow mesenchymal stem cells [J]. Tianjin Medical Journal, 2024, 52(5): 454-458. |
[8] | Neurosurgery Branch of Tianjin Medical Association. Beijing-Tianjin-Hebei expert consensus on the surgical treatment of extracranial segmental carotid atherosclerotic disease [J]. Tianjin Medical Journal, 2024, 52(3): 225-230. |
[9] | WANG Xinyao, YANG Hui, LI Bingbing. Research progress of mesenchymal stem cells in endometriosis [J]. Tianjin Medical Journal, 2024, 52(2): 215-219. |
[10] | LIN Yao, LIU Congna, WANG Shixia, ZHANG Zhiyong. Effect of acacetin on lipopolysaccharide induced apoptosis of dental pulp cells by regulating the HMGB1/TLR4 signaling pathway [J]. Tianjin Medical Journal, 2024, 52(12): 1238-1243. |
[11] | GU Wei, ZHANG Huina, HOU Liping, YU Min, CHENG Lirong. Correlation between lipid correlation index and diabetic kidney disease [J]. Tianjin Medical Journal, 2024, 52(12): 1308-1312. |
[12] | LONG Hua, CHEN Yifei, WANG Qingshu. Effect of remimazolam on apoptosis of intestinal epithelial cells in burned rats by regulating TLR4/MyD88/NF-κB signaling pathway [J]. Tianjin Medical Journal, 2024, 52(11): 1152-1157. |
[13] | HAO Kaikai, WANG Xiaomin, LIU Zheng, LIU Dongyang, LI Jing. Effects of ligustilide regulating RhoA/ROCK signaling pathway on biological behavior of esophageal cancer cells [J]. Tianjin Medical Journal, 2024, 52(11): 1164-1170. |
[14] | SUN Chuangxin, LI Gang. Role of NID1 in angiogenesis of clear cell renal cell carcinoma [J]. Tianjin Medical Journal, 2024, 52(10): 1009-1013. |
[15] | XU Guiying, LI Yu, LI Xue, LIU Yimeng, CHEN Huaiyong. Study of Lkb1 regulates epithelial regeneration in asthma using airway organoid [J]. Tianjin Medical Journal, 2024, 52(1): 11-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||