[1] |
张昆龙, 薛白洁, 肖玮, 等. 重复经颅磁刺激对神经病理性疼痛患者疼痛和情绪的影响[J]. 中国现代神经疾病杂志, 2022, 22(11):940-947.
|
|
ZHANG K L, XUE B J, XIAO W, et al. Effects of repetitive transcranial magnetic stimulation on pain and emotion of patients with neuropathic pain[J]. Chin J Contemp Neurol Neurosurg, 2022, 22(11):940-947. doi:10.3969/j.issn.1672-6731.2022.11.005.
|
[2] |
CHEN H, ZHOU C, XIE K, et al. Hydrogen-rich saline alleviated the hyperpathia and microglia activation via autophagy mediated inflammasome inactivation in neuropathic pain rats[J]. Neuroscience, 2019, 421:17-30. doi:10.1016/j. neuroscience.2019.10.046.
|
[3] |
CHEN Q, CHEN P, ZHOU S, et al. Hydrogen-rich saline attenuated neuropathic pain by reducing oxidative stress[J]. Can J Neurol Sci, 2013, 40(6):857-863. doi:10.1155/2019/8685954.
|
[4] |
FENG T, YIN Q, WENG Z L, et al. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1β in the rat spinal cord[J]. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(6):830-837. doi:10.1007/s11596-014-1361-6.
|
[5] |
BENNETT G J, XIE Y K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man[J]. Pain, 1988, 33(1):87-107. doi:10.1016/0304-3959(88)90209-6.
|
[6] |
ZHOU L, WANG X, XUE W, et al. Beneficial effects of hydrogen-rich saline against spinal cord ischemia-reperfusion injury in rabbits[J]. Brain Res, 2013, 1517:150-160. doi:10.1016/j.brainres.2013.04.007.
|
[7] |
SPRINGER M Z, MACLEOD K F. Mitophagy:mechanisms and role in human disease[J]. J Pathol, 2016, 240(3):253-255. doi:10.1002/path.4774.
|
[8] |
GHOSH A, TYSON T, GEORGE S, et al. Mitochondrial pyruvate carrier regulates autophagy,inflammation,and neurodegeneration in experimental models of Parkinson's disease[J]. Sci Transl Med, 2016, 8(368):368ra174. doi:10.1126/scitranslmed.aag2210.
|
[9] |
ZHANG Z, SUN X, WANG K, et al. Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats[J]. Brain Res Bull, 2021, 172:1-13. doi:10.1016/j.brainresbull.2021.04.003.
|
[10] |
BARTH S, GLICK D, MACLEOD K F. Autophagy:assays and artifacts[J]. J Pathol, 2010, 221(2):117-124. doi:10.1002/path.2694.
|
[11] |
LEE H S, DANIELS B H, SALAS E, et al. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies:a case-control study[J]. PLoS One, 2012, 7(4):e36221. doi:10.1371/journal.pone.0036221.
|
[12] |
KUBISCH J, TÜREI D, FÖLDVÁRI-NAGY L, et al. Complex regulation of autophagy in cancer-integrated approaches to discover the networks that hold a double-edged sword[J]. Semin Cancer Biol, 2013, 23(4):252-261. doi:10.1016/j.semcancer.2013.06.009.
|
[13] |
LI J, TIAN M, HUA T, et al. Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain[J]. Autophagy, 2021, 17(12):4062-4082. doi:10.1080/15548627.2021.1900498.
|
[14] |
BUENDIA I, MICHALSKA P, NAVARRO E, et al. Nrf2-ARE pathway:an emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases[J]. Pharmacol Ther, 2016, 157:84-104. doi:10.1016/j.pharmthera.2015.11.003.
|
[15] |
BAXTER P S, BELL K F S, HASEL P, et al. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system[J]. Nat Commun, 2015, 6:6761. doi:10.1038/ncomms7761.
|
[16] |
MA W, MAO J, YANG X, et al. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection[J]. Chem Commun (Camb), 2018, 55(2):159-162. doi:10.1039/c8cc08116f.
|
[17] |
CERDÁ-BERNAD D, VALERO-CASES E, PASTOR J J, et al. Saffron bioactives crocin,crocetin and safranal:effect on oxidative stress and mechanisms of action[J]. Crit Rev Food Sci Nutr, 2022, 62(12):3232-3249. doi:10.1080/10408398.2020.1864279.
|