Tianjin Medical Journal ›› 2024, Vol. 52 ›› Issue (6): 589-594.doi: 10.11958/20231795
• Experimental Research • Previous Articles Next Articles
WANG Junyi(), LI Chen, WU Xinyue, DING Xinyu, WAN Chunxiao(
)
Received:
2023-11-20
Revised:
2023-12-12
Published:
2024-06-15
Online:
2024-06-06
Contact:
△E-mail: WANG Junyi, LI Chen, WU Xinyue, DING Xinyu, WAN Chunxiao. Effect and mechanism of early exercise intervention on cerebral nerve myelin in rats with cerebral ischemia[J]. Tianjin Medical Journal, 2024, 52(6): 589-594.
CLC Number:
组别 | 第1天 | 第3天 | 第7天 | |||
---|---|---|---|---|---|---|
SHAM组 | 1.66±0.81 | 0.17±0.41 | 0.00±0.00 | |||
MCAO-SED组 | 12.33±1.86a | 9.50±2.26a | 8.33±1.21a | |||
MCAO-EX组 | 12.17±1.60 | 8.50±1.38 | 6.33±1.03b | |||
组别 | 第14天 | 第21天 | 第28天 | |||
SHAM组 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |||
MCAO-SED组 | 6.17±1.33a | 5.17±0.98a | 4.67±0.82a | |||
MCAO-EX组 | 4.33±1.03b | 3.67±0.82b | 3.33±0.52b |
Tab.1 Comparison of mNSS scores between three groups of rats
组别 | 第1天 | 第3天 | 第7天 | |||
---|---|---|---|---|---|---|
SHAM组 | 1.66±0.81 | 0.17±0.41 | 0.00±0.00 | |||
MCAO-SED组 | 12.33±1.86a | 9.50±2.26a | 8.33±1.21a | |||
MCAO-EX组 | 12.17±1.60 | 8.50±1.38 | 6.33±1.03b | |||
组别 | 第14天 | 第21天 | 第28天 | |||
SHAM组 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |||
MCAO-SED组 | 6.17±1.33a | 5.17±0.98a | 4.67±0.82a | |||
MCAO-EX组 | 4.33±1.03b | 3.67±0.82b | 3.33±0.52b |
组别 | n | 干预前 | 干预第28天 |
---|---|---|---|
SHAM组 | 3 | 0.00±0.00 | 0.00±0.00 |
MCAO-SED组 | 3 | 41.23±0.87a | 30.36±1.40a |
MCAO-EX组 | 3 | 41.42±1.13 | 22.04±0.21b |
F | 0.053 | 102.521** |
Tab.2 Comparison of changes of cerebral infarction volume ratio between three groups
组别 | n | 干预前 | 干预第28天 |
---|---|---|---|
SHAM组 | 3 | 0.00±0.00 | 0.00±0.00 |
MCAO-SED组 | 3 | 41.23±0.87a | 30.36±1.40a |
MCAO-EX组 | 3 | 41.42±1.13 | 22.04±0.21b |
F | 0.053 | 102.521** |
Fig.3 Ultrastructure of myelin integrity of the external capsule indicated by transmission electron microscope at 28 days of intervention in each group (×6 000)
组别 | ATF6 | IRE1 | p-IRE1 | PERK | p-PERK | cleaved caspase 3 | MBP |
---|---|---|---|---|---|---|---|
SHAM组 | 1.00±0.25 | 1.00±0.23 | 1.00±0.33 | 1.00±0.17 | 1.00±0.11 | 1.00±0.09 | 1.00±0.09 |
MCAO-SED组 | 2.16±0.33a | 1.05±0.13 | 1.96±0.20a | 0.95±0.19 | 1.92±0.27a | 2.86±0.88a | 0.50±0.08a |
MCAO-EX组 | 1.45±0.02b | 1.05±0.17 | 1.45±0.27b | 1.02±0.13 | 1.15±0.28b | 1.60±0.45b | 0.75±0.19b |
F | 24.841** | 0.091 | 12.710** | 0.163 | 17.6743** | 50.112** | 13.867** |
Tab.3 Comparison of ATF6, IRE, PERK, p-IRE, p-PERK, cleaved caspase 3 and MBP protein expression between three groups of rats
组别 | ATF6 | IRE1 | p-IRE1 | PERK | p-PERK | cleaved caspase 3 | MBP |
---|---|---|---|---|---|---|---|
SHAM组 | 1.00±0.25 | 1.00±0.23 | 1.00±0.33 | 1.00±0.17 | 1.00±0.11 | 1.00±0.09 | 1.00±0.09 |
MCAO-SED组 | 2.16±0.33a | 1.05±0.13 | 1.96±0.20a | 0.95±0.19 | 1.92±0.27a | 2.86±0.88a | 0.50±0.08a |
MCAO-EX组 | 1.45±0.02b | 1.05±0.17 | 1.45±0.27b | 1.02±0.13 | 1.15±0.28b | 1.60±0.45b | 0.75±0.19b |
F | 24.841** | 0.091 | 12.710** | 0.163 | 17.6743** | 50.112** | 13.867** |
[1] | IADECOLA C, BUCKWALTER M S, ANRATHER J. Immune responses to stroke: mechanisms, modulation, and therapeutic potential[J]. J Clin Invest, 2020, 130(6):2777-2788. doi:10.1172/jci135530. |
[2] | AJOOLABADY A, WANG S, KROEMER G, et al. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics[J]. Pharmacol Ther, 2021, 225:107848. doi:10.1016/j.pharmthera.2021.107848. |
[3] | RAFFAELE S, GELOSA P, BONFANTI E, et al. Microglial vesicles improve post-stroke recovery by preventing immune cell senescence and favoring oligodendrogenesis[J]. Mol Ther, 2021, 29(4):1439-1458. doi:10.1016/j.ymthe.2020.12.009. |
[4] | XU J, ZHAO J, WANG R, et al. Shh and Olig2 sequentially regulate oligodendrocyte differentiation from hiPSCs for the treatment of ischemic stroke[J]. Theranostics, 2022, 12(7):3131-3149. doi:10.7150/thno.69217. |
[5] | LI L, LI R, ZACHAREK A, et al. ABCA1/ApoE/HDL signaling pathway facilitates myelination and oligodendrogenesis after stroke[J]. Int J Mol Sci, 2020, 21(12):4369. doi:10.3390/ijms21124369. |
[6] | WANG Y H, LIAO J M, CHEN K M, et al. Lumbrokinase regulates endoplasmic reticulum stress to improve neurological deficits in ischemic stroke[J]. Neuropharmacology, 2022, 221:109277. doi:10.1016/j.neuropharm.2022.109277. |
[7] | LI C, HU J, LIU W, et al. Exercise intervention modulates synaptic plasticity by inhibiting excessive microglial activation via exosomes[J]. Front Cell Neurosci, 2022, 16:953640. doi:10.3389/fncel.2022.953640. |
[8] | LI C, KE C, SU Y, et al. Exercise intervention promotes the growth of synapses and regulates neuroplasticity in rats with ischemic stroke through exosomes[J]. Front Neurol, 2021, 12:752595. doi:10.3389/fneur.2021.752595. |
[9] | LI F, GENG X, LEE H, et al. Neuroprotective effects of exercise postconditioning after stroke via SIRT1-mediated suppression of endoplasmic reticulum(ER)stress[J]. Front Cell Neurosci, 2021, 15:598230. doi:10.3389/fncel.2021.598230. |
[10] | 于靖, 于洋, 范金涛, 等. 不同治疗及评价方法对脑卒中康复治疗效果的影响[J]. 天津医药, 2010, 38(8):712-713. |
YU J, YU Y, FAN J T, et al. Effect of different treatment and evaluation methods on rehabilitation of stroke[J]. Tianjin Med J, 2010, 38(8):712-713. | |
[11] | 姜俐洋, 史昱, 黄传, 等. 8周不同时间点有氧运动干预对脑卒中大鼠神经功能的影响[J]. 天津医科大学学报, 2020, 26(4):324-328. |
JIANG L Y, SHI Y, HUANG C, et al. Effects of aerobic exercise intervention at different time points of 8 weeks on nerve function in stroke rats[J]. Journal of Tianjin Medical University, 2020, 26(4):324-328. | |
[12] | ALI A, TABASSUM D, BAIG S S, et al. Effect of Exercise interventions on health-related quality of life after stroke and transient ischemic attack:A Systematic Review and Meta-Analysis[J]. Stroke, 2021, 52(7):2445-2455. doi:10.1161STROKEAHA.120.032979. |
[13] | ZHANG Q, ZHU W, XU F, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury[J]. PLoS Biol, 2019, 17(6):e3000330. doi:10.1371/journal.pbio.3000330. |
[14] | FRANKLIN R J M, SIMONS M. CNS remyelination and inflammation:From basic mechanisms to therapeutic opportunities[J]. Neuron, 2022, 110(21):3549-3565. doi:10.1016/j.neuron.2022.09.023. |
[15] | CHENG J, SHEN W, JIN L, et al. Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/β‑catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion[J]. Int J Mol Med, 2020, 45(5):1447-1463. doi:10.3892/ijmm.2020.4515. |
[16] | VOLPI V G, TOUVIER T, D'ANTONIO M. Endoplasmic reticulum protein quality control failure in myelin disorders[J]. Front Mol Neurosci, 2016, 9:162. doi:10.3389/fnmol.2016.00162. |
[17] | WU S, STONE S, NAVE K A, et al. The integrated UPR and ERAD in oligodendrocytes maintain myelin thickness in adults by regulating myelin protein translation[J]. J Neurosci, 2020, 40(43):8214-8232. doi:10.1523/jneurosci.0604-20.2020. |
[18] | LIN W, POPKO B. Endoplasmic reticulum stress in disorders of myelinating cells[J]. Nat Neurosci, 2009, 12(4):379-385. doi:10.1038/nn.2273. |
[19] | LI Y, LI M, FENG S, et al. Ferroptosis and endoplasmic reticulum stress in ischemic stroke[J]. Neural Regen Res, 2024, 19(3):611-618. doi:10.4103/1673-5374.380870. |
[20] | WANG L, LIU Y, ZHANG X, et al. Endoplasmic reticulum stress and the unfolded protein response in cerebral ischemia/reperfusion injury[J]. Front Cell Neurosci, 2022, 16:864426. doi:10.3389/fncel.2022.864426. |
[21] | INOUE K. Cellular pathology of pelizaeus-merzbacher disease involving chaperones associated with endoplasmic reticulum stress[J]. Front Mol Biosci, 2017, 4:7. doi:10.3389/fmolb.2017.00007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||