Tianjin Medical Journal ›› 2023, Vol. 51 ›› Issue (9): 955-960.doi: 10.11958/20221821
• Experimental Research • Previous Articles Next Articles
HU Mingyue(), LI Xin, GAO Lei, GUAN Mingjie△(
)
Received:
2022-11-07
Revised:
2023-02-14
Published:
2023-09-15
Online:
2023-09-13
Contact:
△E-mail:HU Mingyue, LI Xin, GAO Lei, GUAN Mingjie. Effects of Mongolian astragalus saponin on neuroinflammation and intestinal microflora disorder induced by lead exposure in developing rats[J]. Tianjin Medical Journal, 2023, 51(9): 955-960.
CLC Number:
组别 | 体质量/g | 血铅/(μg/L) |
---|---|---|
CG组 | 236.81±18.79 | 0.292±0.030 |
LE组 | 215.87±15.02 | 6.644±1.899a |
SL组 | 226.97±14.71 | 3.916±0.779ab |
SM组 | 237.29±12.16 | 3.439±1.447ab |
SH组 | 230.81±24.99 | 4.527±0.829a |
F | 2.541 | 111.180* |
Tab.1 Comparison of body weight and blood lead content of rats between the five groups
组别 | 体质量/g | 血铅/(μg/L) |
---|---|---|
CG组 | 236.81±18.79 | 0.292±0.030 |
LE组 | 215.87±15.02 | 6.644±1.899a |
SL组 | 226.97±14.71 | 3.916±0.779ab |
SM组 | 237.29±12.16 | 3.439±1.447ab |
SH组 | 230.81±24.99 | 4.527±0.829a |
F | 2.541 | 111.180* |
组别 | TNF-α | IL-6 | IL-1β |
---|---|---|---|
CG组 | 231.55±55.78 | 136.81±23.92 | 334.41±93.85 |
LE组 | 334.44±53.89a | 193.81±25.45a | 477.92±42.93a |
SL组 | 284.79±47.28 | 167.87±10.25b | 396.67±107.62 |
SM组 | 243.01±54.54b | 157.01±29.73b | 379.65±80.07b |
SH组 | 264.31±56.97b | 156.69±24.69b | 402.22±63.52 |
F | 4.559* | 6.150* | 2.935* |
Tab.2 Comparison of TNF-α, IL-6 and IL-1β levels in hippocampal tissue of rats between the five groups
组别 | TNF-α | IL-6 | IL-1β |
---|---|---|---|
CG组 | 231.55±55.78 | 136.81±23.92 | 334.41±93.85 |
LE组 | 334.44±53.89a | 193.81±25.45a | 477.92±42.93a |
SL组 | 284.79±47.28 | 167.87±10.25b | 396.67±107.62 |
SM组 | 243.01±54.54b | 157.01±29.73b | 379.65±80.07b |
SH组 | 264.31±56.97b | 156.69±24.69b | 402.22±63.52 |
F | 4.559* | 6.150* | 2.935* |
组别 | Shannon指数 | Simpson指数 | chao1指数 |
---|---|---|---|
CG组 | 3.78±0.74 | 0.79±0.08 | 334.39±48.60 |
LE组 | 2.93±0.62a | 0.61±0.12a | 319.18±38.18 |
SL组 | 3.12±0.53a | 0.69±0.10 | 356.63±66.34 |
SM组 | 3.24±0.60 | 0.73±0.10b | 323.82±38.67 |
SH组 | 2.98±0.37a | 0.71±0.14 | 325.74±31.39 |
F | 2.788* | 2.730* | 0.825 |
Tab.3 Comparison of Alpha diversity index of rats between the five groups
组别 | Shannon指数 | Simpson指数 | chao1指数 |
---|---|---|---|
CG组 | 3.78±0.74 | 0.79±0.08 | 334.39±48.60 |
LE组 | 2.93±0.62a | 0.61±0.12a | 319.18±38.18 |
SL组 | 3.12±0.53a | 0.69±0.10 | 356.63±66.34 |
SM组 | 3.24±0.60 | 0.73±0.10b | 323.82±38.67 |
SH组 | 2.98±0.37a | 0.71±0.14 | 325.74±31.39 |
F | 2.788* | 2.730* | 0.825 |
组别 | 罗姆布茨菌属 | 瘤胃球菌属 | 毛罗菌科_UCG-001菌属 | 布劳特氏菌属 | 普雷沃菌科_UCG-001菌属 |
---|---|---|---|---|---|
CG组 | 17.90(15.11,19.09) | 0.21(0.15,0.25) | 3.49(2.32,4.60) | 0.22(0.14,0.26) | 0.16(0.14,0.23) |
LE组 | 7.71(5.67,9.14)a | 1.75(1.67,1.80)a | 0.98(0.44,1.29)a | 0.07(0.03,0.08)a | 0.82(0.75,1.01)a |
SL组 | 12.96(7.02,45.99) | 0.42(0.26,0.56) | 0.77(0.35,1.70)a | 0.20(0.12,0.27)b | 0.32(0.27,0.47) |
SM组 | 33.92(17.06,41.87)b | 0.44(0.17,0.52)b | 2.17(1.56,2.67)b | 0.19(0.11,0.31)b | 0.23(0.10,0.39)b |
SH组 | 8.84(6.01,15.46)c | 0.41(0.26,0.56)b | 1.39(1.05,2.29) | 0.13(0.09,0.15) | 0.21(0.09,0.45)b |
H | 18.434* | 23.604* | 22.526* | 19.055* | 21.980* |
Tab.4 Comparison of the relative abundance (%) of intestinal microbiota of rats at genus level between the five groups
组别 | 罗姆布茨菌属 | 瘤胃球菌属 | 毛罗菌科_UCG-001菌属 | 布劳特氏菌属 | 普雷沃菌科_UCG-001菌属 |
---|---|---|---|---|---|
CG组 | 17.90(15.11,19.09) | 0.21(0.15,0.25) | 3.49(2.32,4.60) | 0.22(0.14,0.26) | 0.16(0.14,0.23) |
LE组 | 7.71(5.67,9.14)a | 1.75(1.67,1.80)a | 0.98(0.44,1.29)a | 0.07(0.03,0.08)a | 0.82(0.75,1.01)a |
SL组 | 12.96(7.02,45.99) | 0.42(0.26,0.56) | 0.77(0.35,1.70)a | 0.20(0.12,0.27)b | 0.32(0.27,0.47) |
SM组 | 33.92(17.06,41.87)b | 0.44(0.17,0.52)b | 2.17(1.56,2.67)b | 0.19(0.11,0.31)b | 0.23(0.10,0.39)b |
SH组 | 8.84(6.01,15.46)c | 0.41(0.26,0.56)b | 1.39(1.05,2.29) | 0.13(0.09,0.15) | 0.21(0.09,0.45)b |
H | 18.434* | 23.604* | 22.526* | 19.055* | 21.980* |
[1] | ZENG X, HUO X, XU X, et al. E-waste lead exposure and children's health in China[J]. Sci Total Environ, 2020, 734:139286. doi:10.1016/j.scitotenv.2020.139286. |
[2] | 梁艳, 肖华, 孙建岭, 等. 警惕儿童的“隐形杀手”[J]. 中国工业医学杂志, 2021, 34(3):288. |
LANG Y, XIAO H, SUN J L, et al. Watch out for 'invisible killers' of children[J]. Chin J Industrial Med, 2021, 34(3):288. doi:10.13631/j.cnki.zggyyx.2021.03.033. | |
[3] | DÓREA J G. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children[J]. Environ Res, 2019, 177:108641. doi:10.1016/j.envres.2019.108641. |
[4] | TENA A, PERU E, MARTINETTI L E, et al. Long-term consequences of early postnatal lead exposure on hippocampal synaptic activity in adult mice[J]. Brain Behav, 2019, 9(8):e01307. doi:10.1002/brb3.1307. |
[5] | CHIBOWSKA K, KORBECKI J, GUTOWSKA I, et al. Pre- and neonatal exposure to lead(Pb) Induces neuroinflammation in the forebrain cortex,hippocampus and cerebellum of rat pups[J]. Int J Mol Sci, 2020, 21(3):1083. doi:10.3390/ijms21031083. |
[6] | ZENG X, ZENG Z, WANG Q, et al. Alterations of the gut microbiota and metabolomics in children with e-waste lead exposure[J]. J Hazard Mater, 2022, 434:128842. doi:10.1016/j.jhazmat.2022.128842. |
[7] | 李瑞盈, 鄢明辉, 游春苹. 脑-肠轴与精神疾病肠道微生物的研究进展[J]. 食品工业科技, 2021, 42(18):427-434. |
LI R Y, YAN M H, YOU C P. Advances in the study of brain-gut axis and intestinal microorganisms in neuropsychiatric diseases[J]. Science and Technology of Food Industry, 2021, 42(18):427-434. doi:10.13386/j.issn1002-0306.2020080250. | |
[8] | 徐锘, 吴晓俊. 黄芪皂苷对神经系统疾病的药理作用研究进展[J]. 中国中药杂志, 2021, 46(18):4674-4682. |
XU N, WU X J. Research advance of pharmacological effects ofastragalosides on nervous system diseases[J]. Chin J Chin Mater Med, 2021, 46(18):4674-4682. doi:10.19540/j.cnki.cjcmm.20210610.704. | |
[9] | 蔚立涛, 赵秉宏, 李鑫, 等. 蒙古黄芪总皂苷对铅染毒大鼠学习记忆损伤的保护作用[J]. 包头医学院学报, 2020, 36(6):52-55. |
WEI L T, ZHAO B H, LI X, et al. Protective effect of Mongolian Astra agalus saponins on learning and memory impairment in rats exposed to lead[J]. Journal of Baotou Medical College, 2020, 36(6):52-55. doi:10.16833/j.cnki.jbmc.2020.06.021. | |
[10] | 田雨, 丁艳平, 邵宝平, 等. 黄芪等药食同源类中药作为功能性食品与肠道菌群的相互作用[J]. 中国中药杂志, 2020, 45(11):2486-2492. |
TIAN Y, DING Y P, SHAO B P, et al. Interaction between homologous functional food Astragali Radix and intestinal flora[J]. Chin J Chin Mater Med, 2020, 45(11):2486-2492. doi:10.19540/j.cnki.cjcmm.20200119.401. | |
[11] | ROGNES T, FLOURI T, NICHOLS B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4:e2584. doi:10.7717/peerj.2584. |
[12] | EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10):996-998. doi:10.1038/nmeth.2604. |
[13] | ANDREOLLO N A, SANTOS E F, ARAÚJO M R, et al. Rat's age versus human's age:what is the relationship?[J]. Arq Bras Cir Dig, 2012, 25(1):49-51. doi:10.1590/s0102-67202012000100011. |
[14] | 朱嘉伟, 许永杰, 李韵婷, 等. 铅暴露引起小鼠学习记忆改变与肠道菌群紊乱的相关性研究[J]. 中华劳动卫生职业病杂志, 2022, 40(2):83-89. |
ZHU J W, XU Y J, LI Y T, et al. Relationships between lead-induced learning and memory impairments and gut microbiota disturbancein mice[J]. Chin J Industrial Hygiene Occupational Dis, 2022, 40(2):83-89. doi:10.3760/cma.j.cn121094-20210121-00041. | |
[15] | KLOTZ K, GÖEN T. Human biomonitoring of lead exposure[J]. Met Ions Life Sci, 2017, 17:99-121. doi:10.1515/9783110434330-006. |
[16] | BOSKABADY M, MAREFATI N, FARKHONDEH T, et al. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms,a review[J]. Environ Int, 2018, 120:404-420. doi:10.1016/j.envint.2018.08.013. |
[17] | SU P, WANG D, CAO Z, et al. The role of NLRP3 in lead-induced neuroinflammation and possible underlying mechanism[J]. Environ Pollut, 2021, 287:117520. doi:10.1016/j.envpol.2021.117520. |
[18] | ZHAI Q, QU D, FENG S, et al. Oral Supplementation of lead-intolerant intestinal microbes protects against lead (Pb) toxicity in mice[J]. Front Microbiol, 2020, 10:3161. doi:10.3389/fmicb.2019.03161. |
[19] | 黄曦瑶, 汪惠丽. 益生菌摄入对铅暴露大鼠社会行为的影响[J]. 合肥工业大学学报(自然科学版), 2020, 43(6):839-843. |
HUANG X Y, WANG H L. Effect of probiotics on social behavior of lead-exposed rats[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43(6):839-843. | |
[20] | HENKE M T, KENNY D J, CASSILLY C D, et al. Ruminococcus gnavus,a member of the human gut microbiome associated with Crohn's disease,produces an inflammatory polysaccharide[J]. Proc Natl Acad Sci USA, 2019, 116(26):12672-12677. doi:10.1073/pnas.1904099116. |
[21] | ZHU H Z, LIANG Y D, MA Q Y, et al. Xiaoyaosan improves depressive-like behavior in rats with chronic immobilization stress through modulation of the gut microbiota[J]. Biomed Pharmacother, 2019, 112:108621. doi:10.1016/j.biopha.2019.108621. |
[22] | LI Q, CUI Y, XU B, et al. Main active components of Jiawei Gegen Qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner[J]. Pharmacol Res, 2021, 170:105694. doi:10.1016/j.phrs.2021.105694. |
[23] | SUN D, BAI R, ZHOU W, et al. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae[J]. Gut, 2021, 70(4):666-676. doi:10.1136/gutjnl-2019-320135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||