Tianjin Medical Journal ›› 2022, Vol. 50 ›› Issue (9): 1002-1008.doi: 10.11958/20212862
• Review • Previous Articles
Received:
2021-12-31
Revised:
2022-04-28
Published:
2022-09-15
Online:
2022-09-05
Contact:
XIA Qiang
E-mail:782198846@qq.com;xiaqiang1973@126.com
CUI Huicheng, XIA Qiang. Research progress in anti-inflammatory activity of insect antimicrobial peptides and anti-inflammatory mechanism based on signal pathway[J]. Tianjin Medical Journal, 2022, 50(9): 1002-1008.
CLC Number:
[1] | MUTHUSAMI S, RAMACHANDRAN I K, BABU K N, et al. Role of inflammation in the development of colorectal cancer[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(1):77-90. doi: 10.2174/1871530320666200909092908. |
[2] | RIMA M, RIMA M, FAJLOUN Z, et al. Antimicrobial peptides:A potent alternative to antibiotics[J]. Antibiotics(Basel), 2021, 10(9):1095. doi: 10.3390/antibiotics10091095. |
[3] | SAHOO A, SWAIN S S, BEHERA A, et al. Antimicrobial peptides derived from insects offer a novel therapeutic option to combat biofilm: a review[J]. Front Microbiol, 2021, 12:661195. doi: 10.3389/fmicb.2021.661195. |
[4] | FENG M, FEI S, XIA J, et al. Antimicrobial peptides as potential antiviral factors in insect antiviral immune response[J]. Front Immunol, 2020, 11:2030. doi: 10.3389/fimmu.2020.02030. |
[5] | ZIAJA M, DZIEDZIC A, SZAFRANIEC K, et al. Cecropins in cancer therapies-where we have been[J]. Eur J Pharmacol, 2020, 882:173317. doi: 10.1016/j.ejphar.2020.173317. |
[6] | MANNIELLO M D, MORETTA A, SALVIA R, et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance[J]. Cell Mol Life Sci, 2021, 78(9):4259-4282. doi: 10.1007/s00018-021-03784-z. |
[7] | ZHAI Z, ZHANG F, CAO R, et al. Cecropin A alleviates inflammation through modulating the gut microbiota of C57BL/6 mice with DSS-induced IBD[J]. Front Microbiol, 2019, 10:1595. doi: 10.3389/fmicb.2019.01595. |
[8] | ZHAI Z, NI X, JIN C, et al. Cecropin A modulates tight junction-related protein expression and enhances the barrier function of porcine intestinal epithelial cells by suppressing the MEK/ERK pathway[J]. Int J Mol Sci, 2018, 19(7):1941. doi: 10.3390/ijms19071941. |
[9] | ZHANG L, GUI S, LIANG Z, et al. Musca domestica cecropin(Mdc) alleviates Salmonella typhimurium-induced colonic mucosal barrier impairment: associating with inflammatory and oxidative stress response, tight junction as well as intestinal flora[J]. Front Microbiol, 2019, 10:522. doi: 10.3389/fmicb.2019.00522. |
[10] | ZHANG L, GUI S, XU Y, et al. Colon tissue-accumulating mesoporous carbon nanoparticles loaded with Musca domestica cecropin for ulcerative colitis therapy[J]. Theranostics, 2021, 11(7):3417-3438. doi: 10.7150/thno.53105. |
[11] | SHIN Y P, LEE J H, KIM I W, et al. Anti-inflammatory activity of antimicrobial peptide Papiliocin 3 derived from the swallowtail butterfly, Papilio xuthus[J]. J Life Sci, 2020, 30(10):886-895. doi: 10.5352/JLS.2020.30.10.886. |
[12] | HENAO-ARIAS D C, TORO L J, TELLEZ-RAMIREZ G A, et al. Novel antimicrobial cecropins derived from O. curvicornis and D. satanas dung beetles[J]. Peptides, 2021, 145:170626. doi: 10.1016/j.peptides.2021.170626. |
[13] | LEE H J, SEO M, BAEK M, et al. Inhibitory effect of Protaetiamycine 6 on neuroinflammation in LPS-stimulated BV-2 microglia[J]. J Life Sci, 2020, 30(12):1078-1084. doi: 10.5352/JLS.2020.30.12.1078. |
[14] | KRISHNAN M, CHOI J, JANG A, et al. A novel peptide antibiotic, Pro10-1D, designed from insect defensin shows antibacterial and anti-inflammatory activities in sepsis models[J]. Int J Mol Sci, 2020, 21(17):6216. doi: 10.3390/ijms21176216. |
[15] | MA X, YANG N, MAO R, et al. The pharmacodynamics study of insect defensin DLP4 against toxigenic Staphylococcus hyicus ACCC 61734 in vitro and vivo[J]. Front Cell Infect Microbiol, 2021, 11:638598. doi: 10.3389/fcimb.2021.638598. |
[16] | LI B, YANG N, WANG X, et al. An enhanced variant designed from DLP4 cationic peptide against Staphylococcus aureus CVCC 546[J]. Front Microbiol, 2020, 11:1057. doi: 10.3389/fmicb.2020.01057. |
[17] | BERTRAMS W, LINDHAUER N S, RIEKE M C, et al. Tribolium castaneum defensin 1 kills Moraxella catarrhalisin an in vitro infection model but does not harm commensal bacteria[J]. Virulence, 2021, 12(1):1003-1010. doi: 10.1080/21505594.2021. 1908741. |
[18] | JANTARUK P, ROYTRAKUL S, SITTHISAK S, et al. Potential role of an antimicrobial peptide, KLK in inhibiting lipopolysaccharide-induced macrophage inflammation[J]. PLoS One, 2017, 12(8):e0183852. doi: 10.1371/journal.pone.0183852. |
[19] | LEE E, KIM J K, SHIN S, et al. Insight into the antimicrobial activities of coprisin isolated from the dung beetle, Copris tripartitus, revealed by structure-activity relationships[J]. Biochim Biophys Acta, 2013, 1828(2):271-283. doi: 10.1016/j.bbamem.2012.10.028. |
[20] | 陈文凤, 王红芳, 刘振国, 等. 中华蜜蜂Apidaecin的重组表达及其抗菌活性[J]. 中国农业科学, 2019, 52(4):767-776. |
CHEN W F, WANG H F, LIU Z G, et al. Recombinant expression and antimicrobial activity of Apidaecin in Apis cerana cerana[J]. Scientia Agricultura Sinica, 2019, 52(4):767-776. doi: 10.3864/j.issn.0578-1752.2019.04.016 | |
[21] | KRIEGER A K, KNAPPE D, ÖHLMANN S, et al. Proline-rich antimicrobial peptide Api137 is bactericidal in porcine blood infected ex vivo with a porcine or human Klebsiella pneumoniae strain[J]. J Glob Antimicrob Resist, 2021, 24:127-135. doi: 10.1016/j.jgar.2020.12.012. |
[22] | LIN Q, SU G, WU A, et al. Bombyx mori gloverin A2 alleviates enterotoxigenic Escherichia coli-induced inflammation and intestinal mucosa disruption[J]. Antimicrob Resist Infect Control, 2019, 8:189. doi: 10.1186/s13756-019-0651-y. |
[23] | LIN Q, FU Q, SU G, et al. Protective effect of Bombyx mori gloverin on intestinal epithelial cells exposure to enterotoxigenic E. coli[J]. Braz J Microbiol, 2021, 52(3):1235-1245. doi: 10.1007/s42770-021-00532-0. |
[24] | KUMAR V. Going, Toll-like receptors in skin inflammation and inflammatory diseases[J]. Excli J, 2021, 20:52-79. doi: 10.17179/excli2020-3114. |
[25] | CZERWINSKA-BLASZCZYK A, PAWLAK E, PAWLOWSKI T. The sgnificance of Toll-like receptors in the neuroimmunologic background of alcohol dependence[J]. Front Psychiatry, 2022, 12:797123. doi: 10.3389/fpsyt.2021.797123. |
[26] | ADHIKARLA S V, JHA N K, GOSWAMI V K, et al. TLR-mediated signal transduction and neurodegenerative disorders[J]. Brain Sci, 2021, 11(11):1373. doi: 10.3390/brainsci11111373. |
[27] | AHMEDY O A, IBRAHIM S M, SALEM H H, et al. Antiulcerogenic effect of melittin via mitigating TLR4/TRAF6 mediated NF-κB and p38MAPK pathways in acetic acid-induced ulcerative colitis in mice[J]. Chem Biol Interact, 2020, 331:109276. doi: 10.1016/j.cbi.2020.109276. |
[28] | KRISHNAN M, CHOI J, JANG A, et al. Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of Papiliocin, an insect innate immune response molecule[J]. Proc Natl Acad Sci U S A, 2022, 119(10):e2115669119. doi: 10.1073/pnas.2115669119. |
[29] | LI B, YANG N, SHAN Y, et al. Therapeutic potential of a designed CSαβ peptide ID13 in Staphylococcus aureus-induced endometritis of mice[J]. Appl Microbiol Biotechnol, 2020, 104(15):6693-6705. doi: 10.1007/s00253-020-10685-x. |
[30] | ALHARBI K S, FULORIA N K, FULORIA S, et al. Nuclear factor-kappa B and its role in inflammatory lung disease[J]. Chem Biol Interact, 2021, 345:109568. doi: 10.1016/j.cbi.2021.109568. |
[31] | PRESCOTT J A, MITCHELL J P, COOK S J. Inhibitory feedback control of NF-κB signalling in health and disease[J]. Biochem J, 2021, 478(13):2619-2664. doi: 10.1042/BCJ20210139. |
[32] | PARK H J, LEE S H, SON D J, et al. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-kappaB through interaction with the p50 subunit[J]. Arthritis Rheum, 2004, 50(11):3504-3515. doi: 10.1002/art.20626. |
[33] | ZHAO X, WANG L, ZHU C, et al. The antimicrobial peptide Mastoparan X protects against enterohemorrhagic Escherichia coli O157: H7 infection, inhibits inflammation, and enhances the intestinal epithelial barrier[J]. Front Microbiol, 2021, 12:644887. doi: 10.3389/fmicb.2021.644887. |
[34] | JEONG Y J, SHIN J M, BAE Y S, et al. Melittin has a chondroprotective effect by inhibiting MMP-1 and MMP-8 expressions via blocking NF-κB and AP-1 signaling pathway in chondrocytes[J]. Int Immunopharmacol, 2015, 25(2):400-405. doi: 10.1016/j.intimp. 2015. 02. 021. |
[35] | LIU Y, PERUMALSAMY H, KANG C H, et al. Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1):777-788. doi: 10.1080/21691401.2020.1748639. |
[36] | SHIN Y P, LEE J H, CHOI R Y, et al. Antiseptic effect of antimicrobial peptide Psacotheasin 2 derived from the yellow-spotted longicorn beetle (Psacothea hilaris)[J]. Dev Comp Immunol, 2021, 123:104140. doi: 10.1016/j.dci.2021.104140. |
[37] | KIM I W, LEE J H, SEO M, et al. Anti-inflammatory activity of antimicrobial peptide Periplanetasin-5 derived from the cockroach Periplaneta americana[J]. J Microbiol Biotechnol, 2020, 30(9):1282-1289. doi: 10.4014/jmb.2004.04046. |
[38] | SHIN Y P, LEE J H, KIM I W, et al. Anti-inflammatory activity of antimicrobial peptide Zophobacin 1 derived from the Zophobas atratus[J]. J Life Sci, 2020, 30(9):804-812.doi: 10.5352/JLS.2020.30.9.804. |
[39] | KASSOUF T, SUMARA G. Impact of conventional and atypical MAPKs on the development of metabolic diseases[J]. Biomolecules, 2020, 10(9):1256. doi: 10.3390/biom10091256. |
[40] | WANG Z, GOU X. Receptor-like protein kinases function upstream of MAPKs in regulating plant development[J]. Int J Mol Sci, 2020, 21(20):7638. doi: 10.3390/ijms21207638. |
[41] | SEO M, SHIN Y P, LEE H J, et al. Anti-neuroinflammatory effect of Teleogryllus emma derived Teleogryllusine in LPS-stimulated BV-2 microglia[J]. J Life Sci, 2020, 30(11):999-1006. doi: 10.5352/JLS.2020.30.11.999 |
[42] | WANG L, HU Y, SONG B, et al. Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease[J]. Inflamm Res, 2021, 70(7):753-764. doi: 10.1007/s00011-021-01482-x. |
[43] | LI B, WAN Q, LI Z, et al. Janus kinase signaling:oncogenic criminal of lymphoid cancers[J]. Cancers (Basel), 2021, 13(20):5147. doi: 10.3390/cancers13205147. |
[44] | AN H J, KIM J Y, KIM W H, et al. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro[J]. Br J Pharmacol, 2018, 175(23):4310-4324. doi: 10.1111/bph.14487. |
[45] | KIM K H, SUNG H J, LEE W R, et al. Effects of melittin treatment in cholangitis and biliary fibrosis in a model of xenobiotic-induced cholestasis in mice[J]. Toxins(Basel), 2015, 7(9):3372-3387. doi: 10.3390/toxins7093372. |
[46] | NAM H J, OH A R, NAM S T, et al. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation[J]. J Pept Sci, 2012, 18(10):650-656. doi: 10.1002/psc.2437. |
[47] | YOON I N, HONG J, ZHANG P, et al. An analog of the antimicrobial peptide CopA5 inhibits lipopolysaccharide-induced macrophage activation[J]. J Microbiol Biotechnol, 2017, 27(2):350-356. doi: 10.4014/jmb.1607.07065. |
[48] | WANG M, ZHANG J, GONG N. Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury : a narrative review[J]. Ann Palliat Med, 2022, 11(2):806-817. doi: 10.21037/apm-21-3286. |
[49] | DARICI S, ALKHALDI H, HORNE G, et al. Targeting PI3K/Akt/mTOR in AML:rationale and clinical evidence[J]. J Clin Med., 2020, 9(9):2934. doi: 10.3390/jcm9092934. |
[50] | KIM W H, AN H J, KIM J Y, et al. Anti-inflammatory effect of melittin on Porphyromonas gingivalis LPS-stimulated human keratinocytes[J]. Molecules, 2018, 23(2):332. doi: 10.3390/molecules23020332. |
[51] | GU H, AN H J, GWON M G, et al. Bee venom and its major component melittin attenuated Cutibacterium acnes- and IGF-1-induced acne vulgaris via inactivation of Akt/mTOR/SREBP signaling pathway[J]. Int J Mol Sci, 2022, 23(6):3152. doi: 10.3390/ijms23063152. |
[52] | FAN X G, PEI S Y, ZHOU D, et al. Melittin ameliorates inflammation in mouse acute liver failure via inhibition of PKM2-mediated Warburg effect[J]. Acta Pharmacol Sin, 2021, 42(8):1256-1266. doi: 10.1038/s41401-020-00516-0. |
[53] | MOON D O, PARK S Y, LEE K J, et al. Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia[J]. Int Immunopharmacol, 2007, 7(8):1092-1101. doi: 10.1016/j.intimp.2007.04.005. |
[54] | ZHANG T, WANG X F, WANG Z C, et al. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation[J]. Biomed Pharmacother, 2020, 129:110287. doi: 10.1016/j.biopha.2020.110287. |
[55] | LI S N, WU J F. TGF-β/Smad signaling regulation of mesenchymal stem cells in adipocyte commitment[J]. Stem Cell Res Ther, 2020, 11(1):41. doi: 10.1186/s13287-020-1552-y. |
[56] | SHIN S H, YE M K, CHOI S Y, et al. The effects of melittin and apamin on airborne fungi-induced chemical mediator and extracellular matrix production from nasal polyp fibroblasts[J]. Toxins(Basel), 2017, 9(11):348. doi: 10.3390/toxins9110348. |
[57] | LEE J, HAN S Y, JI A R, et al. Antimicrobial effects of coprisin on wounds infected with Staphylococcus aureus in rats[J]. Wound Repair Regen, 2013, 21(6):876-882. doi: 10.1111/wrr.12112. |
[58] | CHEN C H, LU T K. Development and challenges of antimicrobial peptides for therapeutic applications[J]. Antibiotics(Basel), 2020, 9(1):24. doi: 10.3390/antibiotics9010024. |
[59] | CARPENA M, NUNEZ-ESTEVEZ B, SORIA-LOPEZ A, et al. Bee venom: an updating review of its bioactive molecules and its health applications[J]. Nutrients, 2020, 12(11):3360. doi: 10.3390/nu12113360. |
[60] | ASKARI P, NAMAEI M H, GHAZVINI K, et al. In vitro and in vivo toxicity and antibacterial efficacy of melittin against clinical extensively drug-resistant bacteria[J]. BMC Pharmacol Toxicol, 2021, 22(1):42. doi: 10.1186/s40360-021-00503-z. |
[61] | LUONG H X, THANH T T, TRAN T H. Antimicrobial peptides-advances in development of therapeutic applications[J]. Life Sci, 2020, 260:118407. doi: 10.1016/j.lfs.2020.118407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||