
Tianjin Medical Journal ›› 2026, Vol. 54 ›› Issue (1): 1-7.doi: 10.11958/20252219
• Cell and Molecular Biology • Next Articles
ZHUANG Ruiling(
), YANG Jie, CHEN Yanxin, ZHANG Yun△(
)
Received:2025-06-06
Revised:2025-09-21
Published:2026-01-15
Online:2026-01-19
Contact:
△ E-mail:ZHUANG Ruiling, YANG Jie, CHEN Yanxin, ZHANG Yun. Based on the combined transcriptomic and metabolomic analysis of the regulatory role of GLUL in drug resistance in chronic myeloid leukemia[J]. Tianjin Medical Journal, 2026, 54(1): 1-7.
CLC Number:
| 基因名称 | 引物/干扰序列(5′→3′) | 产物大小/bp |
|---|---|---|
| Homo β-actin | 上游:CCCTGGAGAAGAGCTACGAG | 180 |
| 下游:CGTACAGGTCTTTGCGGATG | ||
| Homo GLUL | 上游:ATTACTGTGGTGTGGGAGCA | 200 |
| 下游:ACGATGCAAGATGAAACGGG | ||
| NC | UUCUCCGAACGUGUCACGUTT- | |
| ACGUGACACGUUCGGAGAATT | ||
| si-GLUL-1 | ATTCCATGAAACCTCCAACATT- | |
| TGTTGGAGGTTTCATGGAATTT | ||
| si-GLUL-2 | GCTGCCATGTTTCGGGACCCCTTTT- | |
| TGTTGGAGGTTTCATGGAATTT | ||
| si-GLUL-3 | CTGCGACCCCTTTTCGGTGACTT- | |
| GTCACCGAAAAGGGGTCGCAGTT |
Tab.1 Primer sequences and interference sequences
| 基因名称 | 引物/干扰序列(5′→3′) | 产物大小/bp |
|---|---|---|
| Homo β-actin | 上游:CCCTGGAGAAGAGCTACGAG | 180 |
| 下游:CGTACAGGTCTTTGCGGATG | ||
| Homo GLUL | 上游:ATTACTGTGGTGTGGGAGCA | 200 |
| 下游:ACGATGCAAGATGAAACGGG | ||
| NC | UUCUCCGAACGUGUCACGUTT- | |
| ACGUGACACGUUCGGAGAATT | ||
| si-GLUL-1 | ATTCCATGAAACCTCCAACATT- | |
| TGTTGGAGGTTTCATGGAATTT | ||
| si-GLUL-2 | GCTGCCATGTTTCGGGACCCCTTTT- | |
| TGTTGGAGGTTTCATGGAATTT | ||
| si-GLUL-3 | CTGCGACCCCTTTTCGGTGACTT- | |
| GTCACCGAAAAGGGGTCGCAGTT |
| 细胞 | n | 基因FPKM | |||
|---|---|---|---|---|---|
| ALDH4A1 | GLUL | ADSS2 | GFPT2 | ||
| K562 | 3 | 15.71±4.08 | 74.28±4.56 | 7.96±2.16 | 0.04±0.02 |
| K562-G01 | 3 | 24.68±0.24 | 110.71±2.72 | 19.45±3.32 | 0.19±0.09 |
| t | 4.509* | 3.699* | 2.884* | 2.823* | |
| 细胞 | n | 代谢物丰度 | |||
| 琥珀酸半醛 | N-乙酰天冬氨酰谷氨酸 | γ-氨基丁酸 | 5-磷酸核糖胺 | ||
| K562 | 6 | 6 455.00±1 081.87 | 68 900.00±141.42 | 514.00±1.41 | 6 495.00±742.46 |
| K562-G01 | 6 | 32 000.00±21 071.78 | 22 400.00±27 152.90 | 8 950.00±3 747.67 | 46 500.00±24 041.63 |
| t | 3.976** | 3.987** | 3.204** | 4.188** | |
Tab.2 Differentially expressed genes and metabolites between K562 and K562 G01 cells ($\bar{x}±s$)
| 细胞 | n | 基因FPKM | |||
|---|---|---|---|---|---|
| ALDH4A1 | GLUL | ADSS2 | GFPT2 | ||
| K562 | 3 | 15.71±4.08 | 74.28±4.56 | 7.96±2.16 | 0.04±0.02 |
| K562-G01 | 3 | 24.68±0.24 | 110.71±2.72 | 19.45±3.32 | 0.19±0.09 |
| t | 4.509* | 3.699* | 2.884* | 2.823* | |
| 细胞 | n | 代谢物丰度 | |||
| 琥珀酸半醛 | N-乙酰天冬氨酰谷氨酸 | γ-氨基丁酸 | 5-磷酸核糖胺 | ||
| K562 | 6 | 6 455.00±1 081.87 | 68 900.00±141.42 | 514.00±1.41 | 6 495.00±742.46 |
| K562-G01 | 6 | 32 000.00±21 071.78 | 22 400.00±27 152.90 | 8 950.00±3 747.67 | 46 500.00±24 041.63 |
| t | 3.976** | 3.987** | 3.204** | 4.188** | |
| 组别 | GLUL基因 | GLUL蛋白 | ||
|---|---|---|---|---|
| K562 | K562-G01 | K562 | K562-G01 | |
| 对照组 | 1.00±0.00 | 1.00±0.00 | 0.66±0.07 | 0.88±0.24 |
| si-GLUL-1组 | 0.81±0.19 | 0.83±0.21 | 0.71±0.03 | 0.86±0.01 |
| si-GLUL-2组 | 0.44±0.12ab | 0.39±0.13ab | 0.34±0.07ab | 0.49±0.05ab |
| si-GLUL-3组 | 0.64±0.03ac | 0.62±0.08ac | 0.52±0.20ac | 0.73±0.03ac |
| F | 24.112** | 18.443** | 19.695** | 87.524** |
Tab.3 Detection results of interference efficiency of GLUL (n=3,$\bar{x}±s$)
| 组别 | GLUL基因 | GLUL蛋白 | ||
|---|---|---|---|---|
| K562 | K562-G01 | K562 | K562-G01 | |
| 对照组 | 1.00±0.00 | 1.00±0.00 | 0.66±0.07 | 0.88±0.24 |
| si-GLUL-1组 | 0.81±0.19 | 0.83±0.21 | 0.71±0.03 | 0.86±0.01 |
| si-GLUL-2组 | 0.44±0.12ab | 0.39±0.13ab | 0.34±0.07ab | 0.49±0.05ab |
| si-GLUL-3组 | 0.64±0.03ac | 0.62±0.08ac | 0.52±0.20ac | 0.73±0.03ac |
| F | 24.112** | 18.443** | 19.695** | 87.524** |
| 组别 | K562细胞 | K562-G01细胞 |
|---|---|---|
| NC组 | 10.17±1.16 | 10.90±0.61 |
| si-GLUL组 | 26.86±1.40a | 17.13±1.22a |
| 伊马替尼组 | 20.30±0.84a | 15.15±1.37a |
| si-GLUL+伊马替尼组 | 43.71±2.23bc | 32.16±1.94bc |
| F | 265.300** | 137.000** |
Tab.4 Comparison of apoptosis rates between the five groups of cells (n=3,%,$\bar{x}±s$)
| 组别 | K562细胞 | K562-G01细胞 |
|---|---|---|
| NC组 | 10.17±1.16 | 10.90±0.61 |
| si-GLUL组 | 26.86±1.40a | 17.13±1.22a |
| 伊马替尼组 | 20.30±0.84a | 15.15±1.37a |
| si-GLUL+伊马替尼组 | 43.71±2.23bc | 32.16±1.94bc |
| F | 265.300** | 137.000** |
| [1] | MOJIDRA R, HOLE A, IWASAKI K, et al. DNA fingerprint analysis of raman spectra captures global genomic alterations in imatinib-resistant chronic myeloid leukemia: a potential single assay for screening imatinib resistance[J]. Cells, 2021, 10(10):2506. doi:10.3390/cells10102506. |
| [2] | BADRALEXI I, BORDEI A, HALANAY A, et al. Dynamics of chronic myeloid leukemia under imatinib treatment:a study of resistance development[J]. Mathematics, 2025, 12(24):3937. doi:10.3390/math12243937. |
| [3] | HE Y, DING J, LIU L, et al. Investigation of TSRP reverses imatinib resistance through the PI3K / Akt pathway in chronic myeloid leukemia[J]. Ann Hematol, 2024, 103(12):5285-5296. doi:10.1007/s00277-024-06099-8. |
| [4] | MOJIDRA R, GARDI N, BAGAL B, et al. Genomic analysis identifies an incipient signature to forecast imatinib resistance before start of treatment in patients with chronic myeloid leukemia[J]. Adv Biomark Sci Technol, 2025, 7:59-64. doi:10.1016/j.abst. |
| [5] | ZHANG R, HAO J, YU H, et al. circ_SIRT1 upregulates ATG12 to facilitate Imatinib resistance in CML through interacting with EIF4A3[J]. Gene, 2024,893:147917. doi:10.1016/j.gene.2023.147917. |
| [6] | LI C, WEN L, DONG J, et al. Alterations in cellular metabolisms after TKI therapy for Philadelphia chromosome-positive leukemia in children: A review[J]. Front Oncol, 2022,12:1072806. doi:10.3389/fonc.2022.1072806. |
| [7] | KO B W, HAN J, HEO J Y, et al. Metabolic characterization of imatinib-resistant BCR-ABL T315I chronic myeloid leukemia cells indicates down-regulation of glycolytic pathway and low ROS production[J]. Leuk Lymphoma, 2016, 57(9):2180-2188. doi:10.3109/10428194.2016.1142086. |
| [8] | BHINGARKAR A, VANGAPANDU H V, RATHOD S, et al. Amino acid metabolic vulnerabilities in acute and chronic myeloid leukemias[J]. Front Oncol, 2021,11:694526. doi:10.3389/fonc.2021.694526. |
| [9] | 吴珺, 陆爱东, 张乐萍, 等. 儿童核心结合因子相关性急性髓系白血病疗效及预后因素分析[J]. 中华血液学杂志, 2019, 40(1):52-57. |
| WU J, LU A D, ZHANG L P, et al. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia[J]. Chin J Hematol, 2019, 40(1):52-57. doi:10.3760/cma.j.issn.0253-2727.2019.01.010. | |
| [10] | LIANG X, ZHOU J, LI C, et al. The roles and mechanisms of TGFB1 in acute myeloid leukemia chemoresistance[J]. Cell Signal, 2024,116:111027. doi:10.1016/j.cellsig.2023.111027. |
| [11] | ZHONG L, XIAO J L, LUO J, et al. Adsl,as a hub for amino acid metabolism and glucose metabolism,promotes the development of multiple myeloma[J]. Blood, 2024, 144(Supplement1):6824. doi:10.1182/blood-2024-204474. |
| [12] | POTETI M, MENEGAZZI G, PEPPICELLI S, et al. Glutamine availability controls bcr/abl protein expression and functional phenotype of chronic myeloid leukemia cells endowed with stem/progenitor cell potential[J]. Cancers (Basel), 2021, 13(17):4372. doi:10.3390/cancers13174372. |
| [13] | IJARE O, BASKIN D, PICHUMANI K. CBMT-01. alanine fuels energy metabolism of glioblastoma cells[J]. Neuro-Oncology, 2019, 21(Supplement6):32-33. doi:10.1093/neuonc/noz175.123. |
| [14] | HELENIUS I T, MADALA H R, YEH J J. An asp to strike out cancer? therapeutic possibilities arising from aspartate's emerging roles in cell proliferation and survival[J]. Biomolecules, 2021, 11(11):1666. doi:10.3390/biom11111666. |
| [15] | XUE W, WU K, GUO X, et al. The pan-cancer landscape of glutamate and glutamine metabolism: a comprehensive bioinformatic analysis across 32 solid cancer types[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(2): 166982. doi:10.1016/j.bbadis.2023.166982. |
| [16] | LAI Y C, LIN G, HO K C, et al. Aspartate and acetate fuel gastrointestinal stromal tumors beyond the warburg effect[J]. Ann Surg Open, 2022, 3(4):e224. doi:10.1097/AS9.0000000000000224. |
| [17] | MUTHU M, KUMAR R, SYED KHAJA A S, et al. GLUL ablation can confer drug resistance to cancer cells via a malate-aspartate shuttle-mediated mechanism[J]. Cancers (Basel), 2019, 11(12):1945. doi:10.3390/cancers11121945. |
| [18] | WU J, DENG P, ZOU L, et al. A phase Ⅱclinical study on apatinib plus vinorelbine in refractory her2-negative breast cancer and its metabolic implications of drug resistance[J]. Curr Cancer Drug Targets, 2025, 25(10):e15680096303785.doi:10.2174/0115680096303785240822155217. |
| [19] | PENG C J, FAN Z, LUO J S, et al. The potential transcriptomic and metabolomic mechanisms of ATO and ATRA in treatment of FLT3-ITD acute myeloid leukemia[J]. Technol Cancer Res Treat, 2024,23:15330338231223080. doi:10.1177/15330338231223080. |
| [20] | SINGH P, YADAV R, VERMA M, et al. Antileukemic activity of hsa-miR-203a-5p by limiting glutathione metabolism in imatinib-resistant K562 cells[J]. Curr Issues Mol Biol, 2022, 44(12):6428-6438. doi:10.3390/cimb44120438. |
| [21] | NAKA K. New routes to eradicating chronic myelogenous leukemia stem cells by targeting metabolism[J]. Int J Hematol, 2021, 113(5):648-655. doi:10.1007/s12185-021-03112-y. |
| [1] | YANG Yi, DUO Hong, YANG Ya’nan, LIU Yun, LIANG Fengyi, YANG Xueqin. The value of tumor marker-based RECIST criteria in efficacy evaluation for advanced ovarian cancer [J]. Tianjin Medical Journal, 2026, 54(1): 46-51. |
| [2] | HUANG Wei, WANG Jianjian, HUANG Ying, YANG Jun. The effect of compound Kushen Injection combined with chemotherapy and bevacizumab on short-term efficacy of patients with ovarian cancer [J]. Tianjin Medical Journal, 2026, 54(1): 88-92. |
| [3] | HUANG Huiqi, WU Qiuyuan, ZHANG Kun, LI Peixian, XIONG Yaming, YE Guolin, ZHOU Dan. Research on the anti-tumor mechanism of toosendanin combined with olaparib in triple negative breast cancer [J]. Tianjin Medical Journal, 2025, 53(9): 897-902. |
| [4] | WANG Yichen, ZHOU Wenguang, YAN Yanwen, YI Fang, QIN Lingsha, LI Wei, LI Yuquan, ZENG Xiangzong. The clinical significance of Th17 cell heterogeneity in myelodysplastic neoplasms [J]. Tianjin Medical Journal, 2025, 53(9): 942-945. |
| [5] | GAO Zhengjie, MENG Tao, ZHANG Qiao, CHEN Binghe, HOU Dong, ZHU Shaohui. The predictive value of preoperative CALLY index for the short-term prognosis in patients undergoing radical gastrectomy [J]. Tianjin Medical Journal, 2025, 53(9): 967-971. |
| [6] | LIU Hong, ZHANG Yueyue, WANG Yilin, WANG Caili, WANG Xiaomin, MAO Min, LI Yan. The research on the mechanism of microRNA-34a influencing the progression of chronic lymphocytic leukemia by regulating the Wnt pathway [J]. Tianjin Medical Journal, 2025, 53(8): 785-790. |
| [7] | YU Xiaomeng, SUO Rui, DU Xintao, SUO Ying, ASIHAER Ayala, HAO Tianxu, ZHAO Xiaoyun. Effects of human umbilical cord-derived mesenchymal stem cells on chronic intermittent hypoxia in mice [J]. Tianjin Medical Journal, 2025, 53(8): 814-819. |
| [8] | LIU Pengyong, LIU Mengyou, ZHOU Yu, GUAN Hai, TIAN Zhen, HU Hao, YUE Xiaosong, GUAN Qiannan. Risk factors and nomogram construction of permanent hypoparathyroidism after total thyroidectomy [J]. Tianjin Medical Journal, 2025, 53(8): 850-855. |
| [9] | ZHANG Xinglong, HE Hongmei, ZHANG Jing, SHI Ya’nan, REN Lanchun, QIN Xiaohui, SUN Jianghua. The clinical efficacy of artificial pleural effusion combined with radiofrequency ablation in patients with phrenic top liver cancer [J]. Tianjin Medical Journal, 2025, 53(8): 856-859. |
| [10] | SONG Shanshan, JIANG Min, WANG Liang, HUANG Bozhen, WANG Guoyu, LIU Xinxin, MA Siyi. The global burden of tracheal, bronchial and lung cancer disease from 1990 to 2021 and the forecast to 2040 [J]. Tianjin Medical Journal, 2025, 53(8): 875-883. |
| [11] | CAO Zhenzhen, YE Rui, LIU Jiayao, MENG Tong, SUN Rong, XU Lingyao. Application value of serum Hsp90α combined with β2-MG detection in early diagnosis and prognosis of colorectal cancer [J]. Tianjin Medical Journal, 2025, 53(7): 756-760. |
| [12] | HAN Jiancun, ZHOU Yi. Effects of nobiletin on proliferation and apoptosis of laryngeal squamous cell carcinoma cells by regulating the FAK/AKT signaling pathway [J]. Tianjin Medical Journal, 2025, 53(6): 561-565. |
| [13] | LIU Xingchen, WANG Fang, SHEN Yong. Expression of Decorin and Mimecan in cervical cancer and their impact on prognostic assessment [J]. Tianjin Medical Journal, 2025, 53(6): 578-583. |
| [14] | WANG Haicheng, ZHAO Yihan, XIE Meiyi, ZHAO Yuming. Predictive value of SUVmax and SUVmean parameters in 18F-PSMA-1007 PET/CT for the diagnosis and disease progression of prostate cancer [J]. Tianjin Medical Journal, 2025, 53(6): 614-618. |
| [15] | SHA Yajuan, ZHAO Yingyan, LI Haiyan. The predictive value of Naples prognostic score and prognostic nutritional index for postoperative recurrence and survival in endometrial cancer patients [J]. Tianjin Medical Journal, 2025, 53(6): 634-639. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||